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Standard Model

physicists are curious about 
flavor structure:
mass hierarchy (order 10E11), 
quark, lepton mixing patterns,…
puzzles for decades
usually explained by new physics



Speculation  
• Physical observables, being analytical, must respect dispersion 

relations
• Dispersion relation connects various dynamics at different scales; 

heavy meson lifetimes link EW and strong interactions; Higgs decays 
into b quark pairs link Yukawa coupling and strong interactions,…

• Numerous observables imply numerous links --- nontrivial constraints
• Perhaps SM parameters may not be completely free?
• SM flavor structure governed by dispersive constraints?
• If yes, SM flavor structure can be understood dynamically
• These studies initiated by accidental observation on D meson mixing 



Mixing patterns
Why are quark and lepton mixings so different?
A simple example to demonstrate our approach



Issues about fermion mixing
• Neutrino mass ordering                                                                                              

but normal ordering or inverted ordering?
• Why small mixing in quark sector, but large mixing in lepton 

sector?
CKM:
Pontecorvo–Maki–Nakagawa–Sakata: 

• Why lepton mixing has maximal angle                ?

see Henry’s talk



Dispersion relation
• mixing amplitude
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What if EW symmetry restored at high energy?
• Composite Higgs model, Kaplan and Georgi, Phys. Lett. B136, 183 (1984):

• “The electroweak group is broken at a scale                                                 
much smaller than the condensate scale”

• Hyperquark condensates                                                                             
misalign with SU(2)XU(1)                                                                            
vacuum owing to                                                                                          
Yukawa couplings

condensate scale

restoration scale

strong sector

unbroken SU(2)XU(1)

broken SU(2)XU(1)electroweak scale

s
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LO mixing in symmetric phase
• Internal particles massless
• All intermediate channels give same contribution 
• Sum over all channels vanishes due to unitarity
• Mixing phenomenon disappears!

Li, 2306.03463 

EW symmetry broken at low energy;
constrains fermion masses and mixing angles

restoration scale



Box diagram in broken phase
• s’ can be low, so           depends on PMNS matrix elements and 

intermediate neutrino masses in broken phase.
• Box-diagram contribution from channel with two real neutrinos 

Cheng 1982
Buras et al 1984



Constraints 
• How to diminish dispersive integral                       ?
• Asymptotic expansion

to have finite integral

to diminish integral



These four conditions constrain 
neutrino masses and mixing 
angles!
Test quark mixing first---constrain quark masses and CKM matrix elements

for D mixing



Minimization 
• Use unitarity to eliminate       and to rewrite constraints

• Expression for              similar, but with  
• Ratio of CKM elements

• Tune u and v to minimize the sum (real parts of constraints)

then imaginary parts also small

refer to finite integral



Results 

m=i

variation of ms by 0.01 GeV

PDG

they agree well; CP phase must exist

v=0

m=1
m=0,-1

v=0.00062
minimum reached



Global fits experimental discrimination of NO, IO difficult



Chau-Keung parametrization

Pontecorvo–Maki–Nakagawa–Sakata matrix
U =



Neutrino mass orderings
• Apply to lepton                    mixing with intermediate neutrino channels
• Normal ordering (NO) 

• Predict

• Be reminded that it is LO analysis with 3 generations
• Inverted ordering (IO)

• NO and observed PMNS matrix satisfy constraint at order of magnitude

de Salas et al, 2018

global fit

(as long as it is small enough)

dramatically different



Mixing patterns
• Insert u=-1 into m=1 constraint to get analytical expression of v

• In terms of Wolfenstein parameters
• Produce well-known empirical relation

• Chau-Keung parametrization
• Larger mixing angles in lepton sector due to
• Indeed, �⁄𝑚𝑚𝑠𝑠 𝑚𝑚𝑏𝑏 ⁄𝑚𝑚2 𝑚𝑚3 ≈ ⁄𝑠𝑠12𝐶𝐶𝐶𝐶𝐶𝐶 𝑠𝑠12𝑃𝑃𝑃𝑃𝐶𝐶𝑃𝑃 ≈ 0.42

Belfatto et al, 2023

Ahn et al, 2011

(Cheng, Sher 1987) 



Mixing of generations 1-3

•  Heavy lepton could be      or     , same intermediate neutrinos
•                      and satisfy same constraints?
• Magnitude of PMNS matrix elements 

These two rows are indeed similar 
NuFIT, 2023



Maximal mixing angle 
• Recall v has two solutions with opposite signs, so one for                        

another for                     ?
• Check data

• Implication:    

de Salas et al, 2018

Capozzi et al, 2018 

roughly equal

roughly equal



Neutrino mass
Why are neutrinos so light?
Concerned only mass ratios previously; how about absolute mass?



notNot about seesaw mechanism

large Majorana mass
> 10E13 GeV
hard to verify or falsify

EW scale



Formalism 
• Decomposition

• Dispersion relation

• Unitary fermion transform as in broken phase

• Yukawa matrices diagonalized
• Define PMNS matrix
• Lagrangian for symmetric phase  

higher powers in 

Yukawa matrix elements
are not all independent

Higgs charged scalar

physical mass eigenstate

assume Dirac 
neutrinos



Mij in symmetric phase
• One-loop

• Two-loop

• Three-loop

external state in broken
phase; first emissions 
composed of neutral scalar 
and gauge bosons

first term surviving 
summation over all channels

weak coupling



in broken phase
• Mij implies mixing amplitude decreases like 1/s in symmetric phase

• Sum over cuts on internal lines of 

diminish with Rremove

,

good enough for order-of-magnitude estimate

expansion in 



Solution 

• Insert

• Establish solution (g can vary arbitrarily in mathematical viewpoint)
• To probe how small neutrino mass is, consider         mixing
• terms exactly identical  

set to

If                          , no need to tell 
which generation it refers to 



Neutrino mass and new physics scale
• Equality of            terms

• Equality of            terms

• Large new physics (restoration) scale      linked to small neutrino mass
• No definite prediction for     ; need to compute all diagrams
• Crude guesstimate 

no need of new physics scale

like Majorana massmeasure of 3-loop integral
by Katrin Collaboration



Top mass
Heaviest particle in SM
Assume massless 1st generation quarks; derive masses of heavier quarks one by 
one using heavy quark decay widths; get ms ~ 0.1 GeV, mc ~ 1.4 GeV, mb ~ 4 GeV 



Framework 

• Consider box diagram for tu mixing at mQ
• Strong interaction involved

perturbative 
inputs from
box diagrams

due to analyticity

big circle 
contributions
cancel, because

branch cuts along
both m > 0, m < 0

quark-level thresholdshadronic thresholds

unknowns to
be solved

3 channels

mQ

heavy quark mQ to Justify 
perturbative evaluation



Box diagram inputs
• Box diagrams generate (V-A)(V-A), (S-P)(S-P) structures
• Focus on the former

intermediate quark masses

W boson mass

LO QCD



Initial conditions
• Move RHS to LHS,

• Threshold behaviors around

extended to infinity

initial condition

governed by 1st term
in curly brackets
2nd term down by

odd power in m



Integrands 
• Motivated by threshold behaviors, choose integrands (to simplify 

initial conditions) 

• Definitions of                     are self-evident

suppress low-m residues like D meson mass or                                     relative to  

odd power of m due to odd function                in m

alleviate divergent 
behaviors in numerators

additional branch cut
does not contribute mQ



Polynomial expansion
• Introduce dimensionless variables,                           ,

• Start with case of N vanishing coefficients, N large

• Imply expansion in generalized Laguerre polynomials because of 
orthogonality 

→ 0 at large v, because 
power series in          using 

arbitrary scale

contained in 

fixed by initial condition in principle, needs not be infinite

weight



Large N limit 
• Large j approximation, subject to correction of

• Solution 

• Scaling variable , large N limit 

solution in terms of 
single Bessel function

≈ 1

arbitrary degree and scale appear in ratio 



Solutions 
• General form

• Insensitivity to       achieved by

arbitrary scale from scaling integration variable 

fitted to initial conditions 
to fix       ,        ,

vanishing to get discrete roots of 

minimal to maximize stability window in 

Taylor expansion

originating from large circle radius R



Parameter fixing
• Initial conditions around

• Boundary conditions                    set coefficients 

clear why considering complicated
integrands: to have simple power of 

comparison of
fitted results
and inputs



Roots 
• Solutions of unknowns

bb

sb

db

1st peak of bb, 2nd peak of sb,
3rd peak of db overlap around
mQ ~ 180 GeV!

3 derivatives first
vanish simultaneously at 

higher roots, larger 
2nd derivative

uncertainties from
and different ways of fixing 



Summary 

• Mass hierarchy and mixing patterns explained by dispersive 
constraints

• Possible that SM contains only three fundamental parameters (gauge 
couplings) 

• Other parameters, governing interplay among generations of 
fermions, are determined by SM dynamics itself

• Then SM flavor structure can be understood in dynamical way 
• If our explanation is correct, it sheds light on model building for new 

physics
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