

Origin of neutrino masses and its experimental tests

Takehiko Asaka (Niigata Univ.)

The Future is Flavourful (2024/06/04-06 @NYCU, Taipei)

2024/06/05 @NYCU, Taipei

 \blacksquare Three neutrino flavors v_e

Cf. Three charged leptons
 $e \mu$

- **Neutrino oscillations**
	- ¤ Quantum phenomena where neutrino can change its flavor in propagation
	- ¤ Flavor transition probability

$$
P(\nu_{\mu} \to \nu_{\tau}) = \sin^2 2\theta \sin^2 \left(\frac{\Delta m^2 L}{4E}\right)
$$

(simple two-flavor case)

¤ Precisely measured by using solar, atmospheric, reactor, accelerator neutrinos

Neutrino properties

n Mixing angles and mass squared differences are measured very precisely

```
\Delta m_{21}^2 = (7.41^{+0.21}_{-0.20}) \times 10^{-5} \text{ eV}^2
```
 $\Delta m_{31}^2 = (2.505^{+0.024}_{-0.026}) \times 10^{-3} \text{ eV}^2$

 $\sin^2 \theta_{12} = 0.307^{+0.012}_{-0.011}$ $\sin^2 \theta_{23} = 0.454^{+0.019}_{-0.016}$ $\sin^2 \theta_{13} = 0.02224^{+0.00056}_{-0.00047}$ (NuFIT 5.3 (2024), www.nu-fit.org) (NH case)

- **n** Unknown properties
	- Absolute masses of neutrinos (m_{v} lightest ? Mass ordering ?)
	- ¤ CP violations (Dirac phase ? Majorana phase(s) ?)
	- ¤ Dirac or Majorana fermions

We do not know how neutrinos obtain masses.

Takehiko Asaka (Niigata Univ.)

Important Questions

Origin of neutrino masses

- What mechanism ?
- New particle(s)?
- New interaction(s)?

• …

Implications to other physics

- Baryogenesis ?
- Dark matter ?
- Planck scale physics ?
- …

 $\boldsymbol{\mathcal{V}}$

Experimental tests

- Search @LHC, Belle-II, …
- LNV, LFV
- CPV
- Cosmology (y, GW, \dots)
- \bullet \dots

Further,…

- New powerful ν source?
- New experiment method ?
- Applications to other science ?

• …

Contents

- Origin of neutrino masses
	- ¤ Standard Model with right-handed neutrinos and the seesaw mechanism
- Cosmological implication of the seesaw mechanism ¤ Baryon Asymmetry of the Universe
- **Experimental tests of seesaw mechanism** ¤ Neutrinoless Double Beta Decays
- **n** Summary

Origin of Neutrino Masses

Takehiko Asaka (Niigata Univ.) 2024/06/05

Origin of neutrino masses. The charge construction of the neutrino masses. The charge of the charged fermion masses. The charged fermion masses. The charge of the charged fermion masses. We suspect that the charged fermio that the magnetic masses

arXiv:1205.2671v1 [hep-ex] 11 May 2012

In the SM

 \blacksquare Masses and mixings are originated in Yukawa interaction terms **ReportMis suspicion is only may may be possible managery managerships in the possibility energy in the possibi**
In the Masses and mixings are originated in Yukawa interaction terms **Standard Model, many be Majorana fermions. The reason is simple: neutrinos are the only electrical many electrical m**

$$
\mathcal{L} = -F_{\psi} \overline{\Psi}_L \Phi \Psi_R + h.c \qquad \Longrightarrow \qquad m_{\Psi} = F_{\psi} \langle \Phi \rangle
$$

 \blacksquare Neutrino masses might be generated in mechanism different from other quarks and leptons observation of a non-zero rate for this hypothetical process would easily rival, as far as its implications for our en^2 \overline{a} S!
U \blacksquare Nautring masses might be generated in moshanism different \blacksquare incurrino musses might be generated in meenamsm amerent.

Takehiko Asaka (Niigata Univ.) 2024/06/05

Standard Model

Three right-handed neutrinos

Why v_R ?

- **n** Chiral structure of fermions in the SM
- Mass hierarchical patterns of fermion masses ¤ neutrino masses << masses of quarks and leptons $(m_{atm} \simeq 50 \text{ meV } \ll m_e \simeq 0.5 \text{ MeV})$
- **n** Interesting phenomena by right-handed neutrinos
	- ¤ Baryogenesis
		- Leptogenesis / Mechanism by oscillations
	- ¤ Dark matter
		- \bullet ~10 keV mass right-handed neutrino is a candidate of WDM

(it may be irrelevant in the seesaw mechanism)

¤ etc.

Extension by right-handed neutrinos (v_R **)**

Seesaw mechanism

Minkowski '77, Yanagida '79, Gell-Mann, Ramond, Slansky ʻ79 Glashow ʻ79

$$
\mathcal{L} = \mathcal{L}_{\text{SM}} + i \overline{\nu_R} \partial_\mu \gamma^\mu \nu_R - \left(F \overline{L} \nu_R \Phi + \frac{M_M}{2} \overline{\nu_R^c} \nu_R + h.c. \right)
$$

$$
\mathcal{L} \supset \frac{1}{2} \left(\overline{\nu_L}, \overline{\nu_R^c} \right) \begin{pmatrix} 0 & M_D \\ M_D & M_M \end{pmatrix} \begin{pmatrix} \nu_L^c \\ \nu_R \end{pmatrix} + h.c. = \frac{1}{2} (\overline{\nu}, \overline{N^c}) \begin{pmatrix} M_\nu & 0 \\ 0 & M_N \end{pmatrix} \begin{pmatrix} \nu^c \\ N \end{pmatrix} + h.c.
$$

$$
M_D \ll M_M
$$

 \blacksquare Light active neutrinos ν

• Mass
$$
M_{\nu} = -M_D^T \frac{1}{M_M} M_D \quad (M_{\nu} \ll M_D)
$$

Smallness of M_{ν} is naturally explained

11

- **E** Heavy neutral leptons (HNLs) N
	- Mass $M_N = M_M$ and mixing $\Theta = M_D/M_M$
- **n** Mixing in weak interaction
	- \bullet $v_L = U v + \Theta N^c$

Takehiko Asaka (Niigata Univ.) 2021/02/15

Scale of seesaw (mass of HNL)

Various Physics of HNL

Cosmological implication of the seesaw mechanism

-Baryon Asymmetry of the Universe

Takehiko Asaka (Niigata Univ.)

Baryons vs antibaryons

- We observe baryons mostly, not antibaryons
	- ¤ Existence of antiproton
		- In cosmic rays, $p + p \rightarrow p + p + p + \bar{p}$
		- At colliders, $p + \bar{p} \rightarrow X$
- **EX** Asymmetry in numbers of baryons and antibaryons ¤ HOW LARGE ?

Baryon Asymmetry of the Universe (BAU) 16

Observational value Planck 2018 [1807.06209] $\frac{n_B}{\sqrt{2}}$ $=(0.872 \pm 0.004) \times 10^{-10}$ Y_B \bm{S} n_B : baryon number density, s : entropy density Baryon density $\Omega_b h^2$ 0.005 0.01 0.02 0.03 0.27 4 He CMBR **BBN** 0.26 0.25 Y_{p} _{0.24} 0.23 10^{-7} 6000 $\cdot \Omega_{\rm b}$ 50% higher \overline{H} e D $\rightarrow 4$ D/H_r 5000 best ACDM fit $\ell(\ell+1)\,C_\ell^{\rm IT}$ in $\mu{\rm K}^2$ 10^{-4} $\cdots \Omega_{h}$ 50% lower 4000 3 He/H $|_{n}$ $p\ n\to D\gamma$ 10^{-5} 3000 10^{-9} 2000 -5 $7Li/H$ _p 1000 $\bf{0}$ 10^{-10} Ω 200 400 600 800 1000 1200 1400 Multipole moment l $\overline{2}$ $\overline{3}$ $\overline{4}$ 5 6 7 8 9 10 Baryon-to-photon ratio $\eta \times 10^{10}$ [Strumia 06] [PDG] Takehiko Asaka (Niigata Univ.)2024/06/05

Baryogenesis

- **n** Inflation sets baryon number $B = 0$ and non-zero B must be generated after the inflation \rightarrow Baryogenesis
- Conditions for baryogenesis: Sakharov (1967)
	- (1) Baryon number B is violated
	- (2) C and CP symmetries are violated
	- (3) Out of thermal equilibrium

■ We need physics beyond the Standard Model to satisfy all these conditions.

Baryogenesis conditions in the SM

- \blacksquare B and L violation
	- ¤ B and L violations in anomalous EW "sphaleron" which is in thermal equilibrium for T>100GeV
- \blacksquare CP violation

¤ 1 CP phase in the quark-mixing (CKM) matrix

 \rightarrow too small

 $2\sum_{n} (m_{\rm r}^2 - m_{\rm s}^2)(m_{\rm r}^2 - m_{\rm m}^2)(m_{\rm s}^2 - m_{\rm m}^2)(m_{\rm h}^2 - m_{\rm s}^2)(m_{\rm h}^2 - m_{\rm d}^2)(m_{\rm s}^2 - m_{\rm d}^2)/T_{\rm EW}^{12} \sim 10^{-19}$

- **n** Out of equilibrium
	- \blacksquare Strong 1st order phase transition if $m_H < 72$ GeV

but $m_H = 125.25$ GeV

 \rightarrow not satisfied

[Kajantie, Laine, Rummukainen, Shaposhnikov]

à **We have to go beyond the MSM !!**

Baryogenesis conditions and v_R

- \blacksquare B and L violations
	- ¤ EW sphaleron︓B and L are violated but (B-L) invariant

 $B_f =$ $8N_F+4$ $\frac{22N_F+1}{22N_F+13}(B-L)_i = 0.35(B-L)_i$ [Khlebnikov, Shaposhnikov '88, Harvey, Turner '90]

¤ L violation due to Majorana masses

- \blacksquare C and CP violations
	- \blacksquare 1 CP phase in quark sector
	- \blacksquare 6 CP phases in lepton sector (three ν_R case)
		- \bullet Rich CP violation
- Out of equilibrium (\Leftrightarrow depends on scenarios)
	- ¤ Out of equilibrium decay
	- ¤ Departure from thermal bath
	- ¤ …

à **Three conditions can be satisfied !!**

Leptogenesis

■ Decays of right-handed neutrinos can be a source of BAU ¤ CPV in decay

$$
\varepsilon_1 = \frac{\Gamma(N_1 \to L + \Phi^+) - \Gamma(N_1 \to \overline{L} + \Phi)}{\Gamma(N_1 \to L + \Phi^+) + \Gamma(N_1 \to \overline{L} + \Phi)}
$$

¤ L can be converted into B by sphaleron

 n_B $\overline{\mathcal{S}}$ $\propto \varepsilon_1 \propto M_1$

 $M_{N1} > O(10^9)$ GeV

 \rightarrow Experimental test is impossible

Takehiko Asaka (Niigata Univ.)

Resonant leptogenesis

Resonant production of lepton asymmetry occurs if right-handed neutrinos are quasi-degenerate

$$
\varepsilon_{1} = \frac{\Gamma(N_{1} \rightarrow L_{L} + \overline{\Phi}) - \Gamma(N_{1} \rightarrow \overline{L_{L}} + \Phi)}{\Gamma(N_{1} \rightarrow L_{L} + \overline{\Phi}) + \Gamma(N_{1} \rightarrow \overline{L_{L}} + \Phi)}
$$
\n
$$
\Delta M \ll M_{N}
$$
\n
$$
\Delta M = M_{2} - M_{1}
$$
\n
$$
M_{N} = (M_{2} + M_{1})/2
$$
\n
$$
\varepsilon_{1} \propto \frac{M_{N}^{2}}{\Delta M^{2}}
$$
 (for $\Delta M^{2} > O(M_{N} \Gamma_{N})$)\n
\nhuge enhancement

 \Rightarrow Leptogenesis is possible even for $M_1 \ll 10^9$ GeV Note that $M_1 \gtrsim 10^2$ GeV in this case in order to convert lepton asymmetry into baryon asymmetry by EW sphaleron process ($T \approx 10^2$ GeV)

Takehiko Asaka (Niigata Univ.)

Baryogenesis via Neutrino Oscillation

Akhmedov, Rubakov, Smirnov ('98) / TA, Shaposhnikov (ʻ05) Shaposhnikov ('08), Canetti, Shaposhnikov (ʻ10) TA, Ishida (ʻ10), Canetti, Drewes, Shaposhnikov ('12), TA, Eijima, Ishida (ʻ12) Canetti, Drewes, Shaposhnikov (ʻ12), Canetti, Drewes, Frossard, Shaposhnikov (ʻ12) ...

 \blacksquare Oscillation starts at $T_{osc} \sim (M_0 M_N \Delta M)^{1/3}$

Medium effects

$$
\begin{array}{c}\nN_2 \\
N_3\n\end{array}\n\bigg\{\bigg\{\bigg\{\bigg\{\bigg\}\bigg\}\bigg\}\n\bigg\{\bigg\{\bigg\{\bigg\}\bigg\}\n\bigg\}\n\bigg\{\bigg\{\bigg\}\n\bigg\{\bigg\}\n\bigg\{\bigg\}\n\bigg\{\bigg\{\bigg\}\n\bigg\}\n\bigg\{\bigg\{\bigg\}\n\bigg\}\n\bigg\{\bigg\{\bigg\}\n\bigg\{\bigg\}\n\bigg\{\bigg\}\n\bigg\{\bigg\}\n\bigg\{\bigg\}\n\bigg\{\bigg\{\bigg\
$$

 \blacksquare Asymmetries are generated since evolution rates of L_{α} and $\overline{L_{\alpha}}$ are different due to CPV

Baryogenesis region

BAU and CPV in neutrino sector

Neutrino Yukawa couplings

$$
M_{\nu} = -M_D^T M_{N,\text{diag}}^{-1} M_D \quad \text{Casas, Ibarra (01)}
$$
\n
$$
F = \frac{i}{\langle \Phi \rangle} U M_{\nu,\text{diag}}^{1/2} \quad \Omega \quad M_{N,\text{diag}}^{1/2}
$$

In mixing matrix U of active neutrinos In mixing matrix U of RH neutrinos

Dirac phase δ Majorana phase(s) η (η') Phase(s) for v_R

These phases are essential for BAU !

Takehiko Asaka (Niigata Univ.)

2022/03/09

BAU and CPV in neutrino sector

■ T2K and NOvA indicate CPV in neutrino sector

T2K Collaboration Nature 580, 339 (2020)

Non-zero Dirac phase

$$
\delta \sim -\frac{\pi}{2} \, \left(or \, \frac{3\pi}{2} \right)
$$

Important step to understand baryogenesis by RH neutrinos ! **θ13 in the 68.27% confidence level for all non**preferred normal ordering. The intervals labelled T2K only indicate the

shows the best-fit point of the T2K + reactors fit in the preferred normal mass Takehiko Asaka (Niigata Univ.) **θ**23 **f** \mathbf{r} **f** \mathbf{r} in the normal the normal term is the normal term in the normal term is the normal term in the normal term is the normal term in the normal term in the normal term in the normal term in the n

:)

2,000

2022/03/09

BAU and Dirac Phase

 $\mathcal{L} = \mathcal{L} = \mathcal{L} = \mathcal{L} = \mathcal{L} = \mathcal{L}$ Takehiko Asaka (Niigata Univ.)

Experimental Test of the seesaw mechanism

Takehiko Asaka (Niigata Univ.)

Consequences of seesaw mechanism

n Important consequence of the seesaw mechanism

$$
\mathcal{L} = \mathcal{L}_{SM} + i \overline{\nu_R} \gamma^\mu \partial_\mu \nu_R - \left[F \overline{L} \Phi \nu_R + \frac{M_M}{2} \overline{\nu_R^c} \nu_R + h.c. \right]
$$

¤ Lepton number is violated at Lagrangian level

Φ	$L = (\nu, e)^T$	ν_R	
L	0	$+1$	$+1$

- ¤ Active neutrinos and HNLs are both Majorana fermions
- ⇨ Non-SM Lepton Number Violating (LNV) processes
	- Meson decays $(B^- \to N \mu^- \to \pi^+ \mu^- \mu^-)$
	- \bullet pp \rightarrow $\ell^{+}N$ \rightarrow ℓ^{+} $\ell^{+}j$ j
	- $e^-e^- \rightarrow W^-W^-$
	- \bullet …
	- **Neutrinoless Double Beta Decay (NDBD)**

Takehiko Asaka (Niigata Univ.)

Beta decays

Beta decays

 \Box β^- mode: (A, Z) \rightarrow (A, Z+1) + e^- + $\overline{v_e}$

■
$$
\beta^+
$$
 mode: (A, Z) → (A, Z-1) + $e^+ + \nu_e$

J.J. Gomez-Cadenas, J. Martin-Albo, M. Mezzetto, F. Monrabal and M. Sorel, (2012) arXiv:1109.5515 [hep-ex]

Atomic Mass Difference (MeV) 4 ទី **Double beta decay (2vBB decay) β**, ecay≠€

¤ Second order of weak interaction \rightarrow Very long lifetime T \rightarrow very long lifetime

J.J. Gomez-Cadenas, J. Martin-Albo, M. Mezzetto, F. Monrabal and M. Sorel, (2012) arXiv:1109.5515 [hep-ex]

Takehiko Asaka (Niigata Univ.)

2024/06/05

 u_L

 d_L

 d_L

 u_L

30

Neutrinoless double beta decay (NDBD)

 \bullet 0 $v\beta\beta$ decay

$$
A(Z,N) \rightarrow A(Z \pm 2, N \mp 2) + 2 e^{\mp}
$$

¤ Clear experimental signature

- \blacksquare Lepton number violation ($\Delta L = \pm 2$)
	- new physics beyond the Standard Model

Furry, Phys. Rev. 56, 1184 (ʻ39)

Takehiko Asaka (Niigata Univ.)

Effective mass in NDBD decay

 \blacksquare Decay rate

$$
\left(T_{1/2}^{0\nu}\right)^{-1} = G^{0\nu} |\mathcal{M}^{0\nu}|^2 |m_{\text{eff}}|^2
$$

 $\mathcal{M}^{0\nu}$: Nuclear matrix element (NME) $G^{0\nu}$: Phase space factor m_{eff} : Effective mass

Effective mass from active neutrinos

 $m_{\text{eff}} =$ i $U_{ei}^2 m_i$

 m_i : active neutrino masses

 U_{ei} : PMNS neutrino mixing elements

Takehiko Asaka (Niigata Univ.)

Masses and mixings of active neutrinos

- Active neutrino masses (m_1, m_2, m_3)
	- $m_2 > m_2 > m_1$

 v_1 $v₂$ v_3

Normal Hierarchy (NH) Inverted Hierarchy (IH) $m_2 > m_1 > m_2$

PMNS mixing matrix $(\theta_{ij}, \delta, \alpha_{21}, \alpha_{31})$

 $U=$ $c_{12}c_{13}$ $s_{12}c_{13}$ $s_{13}e^{-i\delta}$ $-s_{12}c_{23}-c_{12}s_{23}s_{13}e^{i\delta}$ $c_{12}c_{23}-s_{12}s_{23}s_{13}e^{i\delta}$ $s_{23}c_{13}$ $s_{12}s_{23} - c_{12}c_{23}s_{13}e^{i\delta} - c_{12}s_{23} - s_{12}c_{23}s_{13}e^{i\delta}$ $c_{23}c_{13}$ 1 0 0 $0 \quad e^i$ α_{21} $\frac{2}{2}$ 0 0 0 $e^{i\frac{a_{31}}{2}}$ #

 $m_{\text{eff}} = m_1 c_{12}^2 c_{13}^2 + m_2 s_{12}^2 c_{13}^2 e^{i\alpha_{12}} + m_3 s_{13}^2 e^{i(\alpha_{31}-2\delta)}$

Takehiko Asaka (Niigata Univ.) 2018/03/25

Current status

 $|m_{\text{eff}}|$ [eV]

Takehiko Asaka (Niigata Univ.)

O_v $\beta\beta$ decay and Majorana phase $\overline{}$ and combination of the combination of nase and the uncertainties from neutrino oscillations from neutrino oscillations from neutrino oscillations an

Future prospects

Neutrinoless double beta decays in the low-scale seesaw mechanism

Takehiko Asaka (Niigata Univ.)

NDBD decay in low-scale seesaw

■ Both active neutrinos and HNLs contribute to NDBD

$$
\mathcal{M}^{\text{tot}} = \mathcal{M}^{\nu} \sum_{i} m_{i} U_{ei}^{2} + \sum_{I} \mathcal{M}^{N}(M_{I}) M_{I} \Theta_{el}^{2}
$$

$$
= \mathcal{M}^{\nu} \left[\sum_{i} m_{i} U_{ei}^{2} + \sum_{I} \frac{\mathcal{M}^{N}(M_{I})}{\mathcal{M}^{\nu}} M_{I} \Theta_{el}^{2} \right]
$$
Effective mass m_{eff}

× ² ² 2 2 Θ38 < Θ38 < <

n Suppression Factor

$$
f_{\beta}(M_{I}) = \frac{\mathcal{M}^{N}(M_{I})}{\mathcal{M}^{V}} = \frac{\Lambda_{\beta}^{2}}{\Lambda_{\beta}^{2} + M_{I}^{2}}
$$

$$
\Lambda_{\beta} = \sqrt{\langle \vec{p}_{F}^{2} \rangle} \sim 200 \text{ MeV}
$$

$$
\mathcal{M}^{\nu} \supset \frac{1}{p^2 - m_i^2} \simeq \frac{1}{-\langle \vec{p}_F^2 \rangle}
$$

$$
\mathcal{M}^N \supset \frac{1}{p^2 - M_I^2} \simeq \frac{1}{-\langle \langle \vec{p}_F^2 \rangle + M_I^2 \rangle}
$$

Faessler, Gonzalez, Kovalenko, Simkovic '14 Barea, Kotila, Iachello ʻ15

Takehiko Asaka (Niigata Univ.)

Effective mass in low-scale seesaw

 \blacksquare Effective mass

$$
m_{\text{eff}} = \sum_{i=1,2,3} m_i U_{ei}^2 + \sum_{I} f_{\beta}(M_I) M_I \Theta_{ei}^2
$$

active neutrinos v_i HNLS N_I
 m_{eff}^V m_{eff}^N

 N_I may give a significant contribution to m_{eff} !

$$
m_{\text{eff}}^N = \begin{bmatrix} M_I \Theta_{el}^2 & (M_I \ll \Lambda_{\beta}) \\ \frac{\Lambda_{\beta}^2}{M_I^2} M_I \Theta_{el}^2 & (M_I \gg \Lambda_{\beta}) \end{bmatrix}
$$

 $f_{\beta}(M_{I}) =$

 Λ_{β} ~ 200 MeV

 Λ_{β}^2

 $\Lambda^2_{\beta} + M_I^2$

Takehiko Asaka (Niigata Univ.)

NDBD and HNLs

- \blacksquare HNLs in the seesaw mechanism may give a significant, constructive or destructive contribution to effective mass depending on masses and mixing elements
- **No. 2018** What can we learn about HNLs in the seesaw mechanism by forthcoming NDBD experiments ?
	- ¤ Masses and mixings of HNLs
- To make a simple discussion, we consider the minimal seesaw model with TWO right-handed neutrinos.

$$
m_{\text{eff}} = m_{\text{eff}}^{\nu} + f_{\beta}(M_1) M_1 \Theta_{e1}^2 + f_{\beta}(M_2) M_2 \Theta_{e2}^2
$$

$$
M_1
$$

$$
M_2
$$

What if NDBD will not be observed ?

HNL may hide NDBD ($M_1 \ll M_2$ **)**

Effective mass

KamLAND-Zen PRL117, 082503 (ʻ16)

$$
m_{\text{eff}} = m_{\text{eff}}^{\nu} + f_{\beta}(M_1) M_1 \Theta_{e1}^2 + f_{\beta}(M_2) M_2 \Theta_{e2}^2
$$

 $m_{\text{lightest}} = 0$ in the minimal seesaw

$$
|m_{\text{eff}}^{\nu}| = \left[1.5 - 3.7 \text{ meV (NH)} \atop 19 - 48 \text{ meV (IH)} \right]
$$

■ Consider $M_1 \ll M_2$ (N_2 decouple)

 $m_{\text{eff}} = m_{\text{eff}}^{\nu} + f_{\beta}(M_1) M_1 \Theta_{e1}^2 = 0$

 \Rightarrow NDBD is hidden by HNL contribution

What's happen ?

Takehiko Asaka (Niigata Univ.)

Consequence 1

TA, Ishida, Tanaka arXiv:2012.13186

2022/03/09

 E specially, among all flavor mixing electron-type mixing electron-type mixing element is simply given by

HNL may hide NDBD $(M_1 \simeq M_2)$

• When all heavy neutrinos are degenerate $M_1 = M_2 = M_N$,

$$
m_{\text{eff}} = m_{\text{eff}}^{\nu} + \sum_{I} f_{\beta}(M_{I}) M_{I} \Theta_{el}^{2} = m_{\text{eff}}^{\nu} + f_{\beta}(M_{N}) \sum_{I} M_{N} \Theta_{el}^{2}
$$

$$
= m_{\text{eff}}^{\nu} [1 - f_{\beta}(M_{N})]
$$

- **p** This shows m_{eff} does not depend n_{eff} on the mixing Θ_{el}
- p Heavy neutrinos give destructive contribution
- p In this case, there is no bound on the mixing from $0\nu\beta\beta$ decay
- \rightarrow 0ν $\beta\beta$ decay may be absent even if lepton number is violated in the seesaw mechanism

Seesaw relation between mixings

$$
0 = \sum_i m_i U_{ei}^2 + \sum_I M_I \Theta_{el}^2 = m_{eff}^{\nu} + \sum_I M_I \Theta_{el}^2
$$

What if NDBD will be observed ?

Consequence (Hierarchical HNLs)

n Range of mixing element $|\Theta_{e1}|^2$ is predicted depending on $m_{\text{eff}}^{\text{obs}}$

Consequence (Hierarchical HNLs)

Range of mixing element $|\Theta_{e1}|^2$ **is predicted** 2 is predicted 3

 $m_{\rm eff}^{\rm obs}\!=\!100$ meV (red), 50 meV (blue), 10 meV (green)

\blacksquare Effective mass

¤ Active neutrino contribution

$$
m_{\text{eff}}^{\nu} = \sum_{i} m_{i} U_{ei}^{2}
$$

¤ HNL contribution

$$
m_{\text{eff}}^N = \sum_I f_{\beta}(M_I) M_I \space \Theta_{el}^2
$$

$$
f_{\beta}(M_I) = \frac{\Lambda_{\beta}^2}{\Lambda_{\beta}^2 + M_I^2}
$$

independent on decay nuclei

dependent on decay nuclei !

Multiple detection/non-detection by NDBD using different nuclei is crucial to reveal the properties of HNLs in the seesaw mechanism

Impact of different NDBD nuclei

• When NDBD would be observed for the nucleus $\Lambda_{\beta} = 200$ MeV $M_2 = 200$ GeV

Summary

- Origin of neutrino masses is important for physics beyond SM
- **n** SM with **RH neutrinos** are attractive scenarios
	- ¤ **Seesaw mechanism** for very small neutrino masses
	- ¤ RH neutrinos (HNLs)
		- **Baryon Asymmetry of the Universe (BAU)**
		- Various scenarios depending on masses (Leptogenesis, Resonant Leptogenesis, Baryogenesis via oscillations
- n **Neutrinoless double beta decays**
	- ¤ Light RH neutrinos may give a significant, constructive or destructive contribution
	- ¤ Multiple detections/non-detections by NDBD using different nuclei are crucial to reveal the properties of HNLs in the seesaw mechanism

BACKUP

2024/06/05 Takehiko Asaka (Niigata Univ.)

PHYSICAL REVIEW D 90, 096010 (2014)

arXiv:1408.6077

Arbitrary mass Majorana neutrinos in neutrinoless double beta decay

Amand Faessler,¹ Marcela González,² Sergey Kovalenko,² and Fedor Šimkovic^{3,4,5}

TABLE I. The values of the nuclear matrix elements for the light and heavy neutrino mass mechanisms defined in Eqs. (11) and (12) and the parameters $\langle p^2 \rangle$ and A of the interpolating formula specified in Eqs. (13)–(15). The calculations have been carried out within the QRPA with partial restoration of isospin symmetry [24]. Two different types of NN potential (CD–Bonn and Argonne) as well as quenched $(g_A = 1.00)$ and unquenched $(g_A = 1.269)$ values of the nucleon axial-vector constant have been considered. The cases presented are a) Argonne potential, $g_A = 1.00$; b) Argonne, $g_A = 1.269$; c) CD–Bonn, $g_A = 1.00$; and d) CD–Bonn, $g_A = 1.269$.

	$M^{\prime\,0\nu}_{\;\;\nu}$				$M^{\prime 0\nu}_{\;\;N}$				(p^2) (MeV)				\mathcal{A} (10 ⁻¹⁰ yrs ⁻¹)			
Nucleus	a	$\mathfrak b$	\mathbf{C}	d	a	$\mathbf b$	\mathbf{C}	d	a	$\mathbf b$	\mathbf{C}	d	a	$\mathfrak b$	\mathbf{C}	d
48Ca	0.463	0.541	0.503	0.594	29.0	40.3	49.0	66.3	173.0	189.0	216.0	231.0	0.541	1.05	1.55	2.83
76 Ge	3.886	5.157	4.211	5.571	204.0	287.0	316.0	433.0	159.0	163.0	190.0	193.0	2.55	5.05	6.12	11.5
${}^{82}Se$	3.460	4.642	3.746	5.018	186.0	262.0	287.0	394.0	161.0	165.0	192.0	194.0	9.12	18.1	21.7	40.9
^{96}Zr		2.154 2.717	2.341	2.957	132.0	184.0	202.0	276.0	171.0	180.0	203.0	212.0	9.30	18.1	21.8	40.7
100 _{Mo}	4.185	5.402	4.525	5.850	244.0	342.0	371.0	508.0	167.0	174.0	198.0	204.0	24.6	48.3	56.8	107.
110Pd		4.485 5.762	4.856	6.255	238.0	333.0	360.0	492.0	160.0	166.0	189.0	194.0	7.07	13.8	16.2	30.2
116Cd	3.086	4.040	3.308	4.343	150.0	209.0	222.0	302.0	153.0	157.0	179.0	183.0	9.74	18.9	21.3	39.5
124 Sn	2.797	2.558	3.079	2.913	146.0	184.0	224.0	279.0	158.0	186.0	187.0	214.0	5.00	7.94	11.8	18.2
128 Te	3.445	4.563	3.828	5.084	215.0	302.0	331.0	454.0	173.0	178.0	204.0	207.0	0.705	1.39	1.67	3.14
130 Te	2.945	3.888	3.297	4.373	189.0	264.0	292.0	400.0	175.0	180.0	206.0	209.0	13.2	25.7	31.4	59.0
136Xe	1.643	2.177	1.847	2.460	108.0	152.0	166.0	228.0	178.0	183.0	208.0	211.0	4.41	8.74	10.4	19.7

1

Baryogenesis region

Klaric, Shaposhnikov, Timiryasov arXiv:2103.16545

Takehiko Asaka (Niigata Univ.)