

Origin of neutrino masses and its experimental tests

Takehiko Asaka (Niigata Univ.)

The Future is Flavourful (2024/06/04-06 @NYCU, Taipei)

2024/06/05 @NYCU, Taipei

• Three neutrino flavors ν_e ν_μ ν

Cf. Three charged leptons $e \mu \tau$

- Neutrino oscillations
 - Quantum phenomena where neutrino can change its flavor in propagation
 - **•** Flavor transition probability

$$P(\nu_{\mu} \to \nu_{\tau}) = \sin^2 2\theta \sin^2 \left(\frac{\Delta m^2 L}{4E}\right)$$
(simple two-flavor case)

 Precisely measured by using solar, atmospheric, reactor, accelerator neutrinos

Neutrino properties

Mixing angles and mass squared differences are measured very precisely

```
\Delta m_{21}^2 = (7.41^{+0.21}_{-0.20}) \times 10^{-5} \text{ eV}^2
```

 $\Delta m_{31}^2 = (2.505^{+0.024}_{-0.026}) \times 10^{-3} \text{ eV}^2$

```
\begin{aligned} \sin^2 \theta_{12} &= 0.307^{+0.012}_{-0.011} \\ \sin^2 \theta_{23} &= 0.454^{+0.019}_{-0.016} \end{aligned} \qquad \text{(NH case)} \\ \sin^2 \theta_{13} &= 0.02224^{+0.00056}_{-0.00047} \\ \text{(NuFIT 5.3 (2024), www.nu-fit.org)} \end{aligned}
```

- Unknown properties
 - **D** Absolute masses of neutrinos ($m_{\nu \text{ lightest}}$? Mass ordering ?)
 - **D** CP violations (Dirac phase ? Majorana phase(s) ?)
 - Dirac or Majorana fermions

We do not know how neutrinos obtain masses.

Takehiko Asaka (Niigata Univ.)

Important Questions

Origin of neutrino masses

- What mechanism ?
- New particle(s) ?
- New interaction(s) ?

• • • •

Implications to other physics

- Baryogenesis ?
- Dark matter ?
- Planck scale physics ?
- • •

Experimental tests

- Search @LHC, Belle-II, …
- LNV, LFV
- CPV
- Cosmology (γ , GW, ...)
- • • •

Further,…

- New powerful v source ?
- New experiment method ?
- Applications to other science ?

• • • •

Contents

- Origin of neutrino masses
 - Standard Model with right-handed neutrinos and the seesaw mechanism
- Cosmological implication of the seesaw mechanism
 Baryon Asymmetry of the Universe
- Experimental tests of seesaw mechanism
 Neutrinoless Double Beta Decays
- Summary

Origin of Neutrino Masses

Takehiko Asaka (Niigata Univ.)

Origin of neutrino masses

In the SM

Masses and mixings are originated in Yukawa interaction terms

$$\mathcal{L} = -F_{\psi} \overline{\Psi}_L \Phi \Psi_R + h.c \qquad \Longrightarrow \qquad m_{\Psi} = F_{\psi} \langle \Phi \rangle$$

 Neutrino masses might be generated in mechanism different from other quarks and leptons

Takehiko Asaka (Niigata Univ.)

Standard Model

Higgs	Quarks and	Gauge	
BOSON	(left-handed)	(right-handed)	BOSONS
h	$\begin{pmatrix} u \\ d \end{pmatrix}_{L} \begin{pmatrix} c \\ s \end{pmatrix}_{L} \begin{pmatrix} t \\ b \end{pmatrix}_{L}$	$u_R c_R t_R$ $d_R s_R b_R$	${g} Z^0$
	$\begin{pmatrix} e \\ \mu \end{pmatrix} \begin{pmatrix} \mu \\ \mu \end{pmatrix} \begin{pmatrix} \tau \end{pmatrix}$	$e_{_R}$ $\mu_{_R}$ $ au_{_R}$	W^{\pm}
	$\left(V_{e} \right)_{L} \left(V_{\mu} \right)_{L} \left(V_{\tau} \right)_{L}$		γ

Takehiko Asaka (Niigata Univ.)

Higgs	Quarks and	Gauge	
DOSON	(left-handed)	(right-handed)	DOSONS
h	$\begin{pmatrix} u \\ d \end{pmatrix}_{L} \begin{pmatrix} c \\ s \end{pmatrix}_{L} \begin{pmatrix} t \\ b \end{pmatrix}_{L}$	$u_R c_R t_R$ $d_R s_R b_R$	${g} Z^0$
	$\begin{pmatrix} e \\ \psi \end{pmatrix} \begin{pmatrix} \mu \\ \psi \end{pmatrix} \begin{pmatrix} \tau \\ \psi \end{pmatrix}$	$e_R \ \mu_R \ \tau_R$	W^{\pm}
	$\langle \mathbf{v} e \rangle_L \langle \mathbf{v} \mu \rangle_L \langle \mathbf{v} \tau \rangle_L$	VR1 VR2 VR3	γ

Takehiko Asaka (Niigata Univ.)

Why v_R ?

- Chiral structure of fermions in the SM
- Mass hierarchical patterns of fermion masses
 neutrino masses << masses of quarks and leptons
 $(m_{atm} \simeq 50 \text{ meV} \ll m_e \simeq 0.5 \text{ MeV})$
- Interesting phenomena by right-handed neutrinos
 - **B**aryogenesis
 - Leptogenesis / Mechanism by oscillations
 - Dark matter
 - ~10 keV mass right-handed neutrino is a candidate of WDM

(it may be irrelevant in the seesaw mechanism)

• etc.

Extension by right-handed neutrinos (v_R)

Seesaw mechanism

Minkowski '77, Yanagida '79, Gell-Mann, Ramond, Slansky '79 Glashow '79

$$\mathcal{L} = \mathcal{L}_{\rm SM} + i\overline{\nu_R}\partial_\mu\gamma^\mu\nu_R - \left(F\overline{L}\nu_R\Phi + \frac{M_M}{2}\overline{\nu_R^c}\nu_R + h.c.\right)$$

$$\mathcal{L} \supset \frac{1}{2} \left(\overline{\nu_L}, \overline{\nu_R^c} \right) \begin{pmatrix} 0 & M_D \\ M_D & M_M \end{pmatrix} \begin{pmatrix} \nu_L^c \\ \nu_R \end{pmatrix} + h. c. = \frac{1}{2} \left(\overline{\nu}, \overline{N^c} \right) \begin{pmatrix} M_\nu & 0 \\ 0 & M_N \end{pmatrix} \begin{pmatrix} \nu^c \\ N \end{pmatrix} + h. c.$$
$$M_D \ll M_M$$

\square Light active neutrinos ν

• Mass
$$M_{\nu} = -M_D^T \frac{1}{M_M} M_D \quad (M_{\nu} \ll M_D)$$

Smallness of M_{ν} is naturally explained

- Heavy neutral leptons (HNLs) N
 - Mass $M_N = M_M$ and mixing $\Theta = M_D / M_M$
- Mixing in weak interaction
 - $\nu_L = U \nu + \Theta N^c$

Takehiko Asaka (Niigata Univ.)

Scale of seesaw (mass of HNL)

Various Physics of HNL

Takehiko Asaka (Niigata Univ.)

Cosmological implication of the seesaw mechanism

Baryon Asymmetry of the Universe

Takehiko Asaka (Niigata Univ.)

Baryons vs antibaryons

- We observe baryons mostly, not antibaryons
 - **D** Existence of antiproton
 - In cosmic rays, $p + p \rightarrow p + p + p + \bar{p}$
 - At colliders, $p + \bar{p} \rightarrow X$
- Asymmetry in numbers of baryons and antibaryons
 HOW LARGE ?

Baryon Asymmetry of the Universe (BAU)¹⁶

Observational value
 Planck 2018 [1807.06209]

$$Y_B = \frac{n_B}{s} = (0.872 \pm 0.004) \times 10^{-10}$$

 n_B : baryon number density, s: entropy density

Baryogenesis

- Inflation sets baryon number B = 0 and non-zero B must be generated after the inflation
 → Baryogenesis
- Conditions for baryogenesis: Sakharov (1967)
 - (1) Baryon number B is violated
 - (2) C and CP symmetries are violated
 - (3) Out of thermal equilibrium

 We need physics beyond the Standard Model to satisfy all these conditions.

Baryogenesis conditions in the SM

- B and L violation
 - B and L violations in anomalous EW "sphaleron" which is in thermal equilibrium for T>100GeV
- CP violation

1 CP phase in the quark-mixing (CKM) matrix

 \rightarrow too small

 $CPV \propto J_{CP}(m_t^2 - m_c^2)(m_t^2 - m_u^2)(m_c^2 - m_u^2)(m_b^2 - m_s^2)(m_b^2 - m_d^2)(m_s^2 - m_d^2)/T_{EW}^{12} \sim 10^{-19}$

- Out of equilibrium
 - **D** Strong 1st order phase transition if $m_H < 72 \text{ GeV}$

but $m_{H} = 125.25 \text{ GeV}$

 \rightarrow not satisfied

[Kajantie, Laine, Rummukainen, Shaposhnikov]

\rightarrow We have to go beyond the MSM !!

Baryogenesis conditions and v_R

- B and L violations
 - **D** EW sphaleron : B and L are violated but (B-L) invariant

 $B_f = \frac{8N_F + 4}{22N_F + 13} (B - L)_i = 0.35 (B - L)_i$ [Khlebnikov, Shaposhnikov '88, Harvey, Turner '90]

L violation due to Majorana masses

- C and CP violations
 - **D** 1 CP phase in quark sector
 - **a** 6 CP phases in lepton sector (three v_R case)
 - Rich CP violation
- Out of equilibrium (
 depends on scenarios)
 - **D** Out of equilibrium decay
 - **D**eparture from thermal bath
 - **•** ··· •

→ Three conditions can be satisfied !!

Takehiko Asaka (Niigata Univ.)

Leptogenesis

 Decays of right-handed neutrinos can be a source of BAU **D** CPV in decay $\xrightarrow{N_i}$ $\xrightarrow{N_i}$

$$\varepsilon_{1} = \frac{\Gamma(N_{1} \to L + \Phi^{\dagger}) - \Gamma(N_{1} \to \overline{L} + \Phi)}{\Gamma(N_{1} \to L + \Phi^{\dagger}) + \Gamma(N_{1} \to \overline{L} + \Phi)}$$

L can be converted into B by sphaleron

 $\frac{n_B}{s} \propto \varepsilon_1 \propto M_1$

 $M_{N1} > O(10^9) \,\text{GeV}$

 \rightarrow Experimental test is impossible

SM 10¹⁶ 10^{14} 29 10¹² zero N₁ ∑ 10¹⁰ thermal] 108 dominant N₁ 10⁶ 10^{-8} 10^{-2} 10^{-10} 10-6 10^{-4} 15 \widetilde{m}_1 in eV

 $\overrightarrow{N_i}$

Takehiko Asaka (Niigata Univ.)

Resonant leptogenesis

 Resonant production of lepton asymmetry occurs if right-handed neutrinos are quasi-degenerate

$$\varepsilon_{1} = \frac{\Gamma(N_{1} \rightarrow L_{L} + \overline{\Phi}) - \Gamma(N_{1} \rightarrow \overline{L_{L}} + \Phi)}{\Gamma(N_{1} \rightarrow L_{L} + \overline{\Phi}) + \Gamma(N_{1} \rightarrow \overline{L_{L}} + \Phi)}$$

$$\downarrow \Delta M \ll M_{N}$$

$$\Delta M = M_{2} - M_{1}$$

$$M_{N} = (M_{2} + M_{1})/2$$

$$\varepsilon_{1} \propto \frac{M_{N}^{2}}{\Delta M^{2}} \quad (\text{for } \Delta M^{2} > O(M_{N}\Gamma_{N}))$$
huge enhancement

⇒ Leptogenesis is possible even for $M_1 \ll 10^9$ GeV Note that $M_1 \gtrsim 10^2$ GeV in this case in order to convert lepton asymmetry into baryon asymmetry by EW sphaleron process ($T \gtrsim 10^2$ GeV)

Takehiko Asaka (Niigata Univ.)

Baryogenesis via Neutrino Oscillation

Akhmedov, Rubakov, Smirnov ('98) / TA, Shaposhnikov ('05) Shaposhnikov ('08), Canetti, Shaposhnikov ('10) TA, Ishida ('10), Canetti, Drewes, Shaposhnikov ('12), TA, Eijima, Ishida ('12) Canetti, Drewes, Shaposhnikov ('12), Canetti, Drewes, Frossard, Shaposhnikov ('12) ...

• Oscillation starts at $T_{osc} \sim (M_0 M_N \Delta M)^{1/3}$

Medium effects

• Asymmetries are generated since evolution rates of L_{α} and $\overline{L_{\alpha}}$ are different due to CPV

Takehiko Asaka (Niigata Univ.)

Ν

Baryogenesis region

BAU and CPV in neutrino sector

Neutrino Yukawa couplings

$$M_{\nu} = -M_D^T M_{N,\text{diag}}^{-1} M_D \qquad \text{Casas, Ibarra ('01)}$$

$$F = \frac{i}{\langle \Phi \rangle} U M_{\nu,\text{diag}}^{1/2} \Omega M_{N,\text{diag}}^{1/2}$$

In mixing matrix *U* of active neutrinos

In mixing matrix *U* of RH neutrinos

Dirac phase δ

Majorana phase(s) η (η')

Phase(s) for v_R

These phases are essential for BAU !

BAU and CPV in neutrino sector

T2K and NOvA indicate CPV in neutrino sector

T2K Collaboration Nature 580, 339 (2020)

Non-zero Dirac phase

$$\delta \sim -\frac{\pi}{2} \left(or \; \frac{3\pi}{2} \right)$$

Important step to understand baryogenesis by RH neutrinos !

Takehiko Asaka (Niigata Univ.)

2,000

2022/03/09

BAU and Dirac Phase

26

Experimental Test of the seesaw mechanism

Takehiko Asaka (Niigata Univ.)

Consequences of seesaw mechanism

Important consequence of the seesaw mechanism

$$\mathcal{L} = \mathcal{L}_{SM} + i\overline{\nu_R}\gamma^{\mu}\partial_{\mu}\nu_R - \left[F\,\overline{L}\Phi\nu_R + \frac{M_M}{2}\,\overline{\nu_R^c}\,\nu_R + h.c.\right]$$

Lepton number is violated at Lagrangian level

$$\begin{array}{c|c} \Phi & \boldsymbol{L} = (\boldsymbol{\nu}, \boldsymbol{e})^T & \boldsymbol{\nu}_R \\ L & 0 & +1 & +1 \end{array}$$

- Active neutrinos and HNLs are both Majorana fermions
- ⇒ Non-SM Lepton Number Violating (LNV) processes
 - Meson decays $(B^- \rightarrow N \mu^- \rightarrow \pi^+ \mu^- \mu^-)$

•
$$pp \to \ell^+ N \to \ell^+ \ \ell^+ j j$$

•
$$e^-e^- \rightarrow W^-W^-$$

• ···

• Neutrinoless Double Beta Decay (NDBD)

Takehiko Asaka (Niigata Univ.)

Beta decays

Beta decays

 $\label{eq:basic} \blacksquare \ \beta^- \ {\sf mode:} \ ({\sf A}, \, {\sf Z}) \rightarrow ({\sf A}, \, {\sf Z}{+}1) \, + \, e^- \, + \, \overline{\nu_e}$

$$\square \beta^+ \text{ mode: } (\mathsf{A}, \mathsf{Z}) \rightarrow (\mathsf{A}, \mathsf{Z}-1) + e^+ + \nu_e$$

J.J. Gomez-Cadenas, J. Martin-Albo, M. Mezzetto, F. Monrabal and M. Sorel, (2012) arXiv:1109.5515 [hep-ex]

Takehiko Asaka (Niigata Univ.)

Double beta decay¹³ (2νββ decay)

■ Second order of weak interaction → Very long lifetime

Isotope	$T_{1/2}^{2\nu}$ (year)	Experiments	$W \ge e_L$
⁴⁸ Ca	$(4.4^{+0.6}_{-0.5}) \times 10^{19}$	Irvine TPC [28], TGV [29], NEMO3 [30]	\sim ν_{el}
⁷⁶ Ge	$(1.5 \pm 0.1) \times 10^{21}$	PNL-USC-ITEP-YPI [31], IGEX [32], H-M [33]	
°2Se	$(0.92 \pm 0.07) \times 10^{20}$	NEMO3 [34], Irvine TPC [35], NEMO2 [36]	
$100 M_{\odot}$	$(2.3 \pm 0.2) \times 10^{10}$ $(7.1 \pm 0.4) \times 10^{18}$	NEMO2 $[37]$, NEMO3 $[38]$ NEMO3 $[34]$ NEMO 2 $[30]$ Juning TPC $[40]$	
116 Cd	$(7.1 \pm 0.4) \times 10$ $(2.8 \pm 0.2) \times 10^{19}$	NEMO3 [30], ELEGANT [41], Solotvina [42], NEMO2 [43]	ν_{el}
130 Te	$(6.8^{+1.2}_{-1.1}) \times 10^{20}$	CUORICINO [44], NEMO3 [45]	
$^{136}_{150}$ Xe	$(2.11 \pm 0.21) \times 10^{21}$	EXO-200 [24]	$W \ge \sum_{\rho_T}$
¹⁵⁰ Nd	$(8.2 \pm 0.9) \times 10^{18}$	Irvine TPC [40], NEMO3 [46]	$VV \leq CL$

J.J. Gomez-Cadenas, J. Martin-Albo, M. Mezzetto, F. Monrabal and M. Sorel, (2012) arXiv:1109.5515 [hep-ex]

2024/06/05

 u_L

 d_L

 d_L

 u_L

Neutrinoless double beta decay (NDBD)

• $0\nu\beta\beta$ decay

$$A(Z,N) \to A(Z \pm 2, N \mp 2) + 2 e^{\mp}$$

Clear experimental signature

- **\square** Lepton number violation ($\Delta L = \pm 2$)
 - new physics beyond the Standard Model

Furry, Phys. Rev. 56, 1184 ('39)

Effective mass in NDBD decay

Decay rate

$$\left(T_{1/2}^{0\nu}\right)^{-1} = G^{0\nu} |\mathcal{M}^{0\nu}|^2 |m_{\rm eff}|^2$$

 $G^{0\nu}$: Phase space factor $\mathcal{M}^{0\nu}$: Nuclear matrix element (NME) $m_{\rm eff}$: Effective mass

Effective mass from active neutrinos

 $m_{\rm eff} = \sum_i U_{ei}^2 m_i$

 m_i : active neutrino masses

 U_{ei} : PMNS neutrino mixing elements

Masses and mixings of active neutrinos

- Active neutrino masses (m_1, m_2, m_3)
 - $m_3 > m_2 > m_1$

 ν_2

Normal Hierarchy (NH) Inverted Hierarchy (IH) $m_2 > m_1 > m_3$

• PMNS mixing matrix $(\theta_{ij}, \delta, \alpha_{21}, \alpha_{31})$

 $U = \begin{pmatrix} c_{12}c_{13} & s_{12}c_{13} & s_{13}e^{-i\delta} \\ -s_{12}c_{23} - c_{12}s_{23}s_{13}e^{i\delta} & c_{12}c_{23} - s_{12}s_{23}s_{13}e^{i\delta} & s_{23}c_{13} \\ s_{12}s_{23} - c_{12}c_{23}s_{13}e^{i\delta} & -c_{12}s_{23} - s_{12}c_{23}s_{13}e^{i\delta} & c_{23}c_{13} \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & e^{i\frac{\alpha_{21}}{2}} & 0 \\ 0 & 0 & e^{i\frac{\alpha_{31}}{2}} \end{pmatrix}$

 $m_{\rm eff} = m_1 c_{12}^2 c_{13}^2 + m_2 s_{12}^2 c_{13}^2 e^{i\alpha_{12}} + m_3 s_{13}^2 e^{i(\alpha_{31} - 2\delta)}$

Takehiko Asaka (Niigata Univ.)

2018/03/25

Current status

Takehiko Asaka (Niigata Univ.)

Ονββ decay and Majorana phase

Future prospects

Neutrinoless double beta decays in the low-scale

seesaw mechanism

Takehiko Asaka (Niigata Univ.)

NDBD decay in low-scale seesaw

Both active neutrinos and HNLs contribute to NDBD

$$\mathcal{M}^{\text{tot}} = \mathcal{M}^{\nu} \sum_{i} m_{i} U_{ei}^{2} + \sum_{I} \mathcal{M}^{N}(M_{I}) M_{I} \Theta_{eI}^{2}$$
$$= \mathcal{M}^{\nu} \left[\sum_{i} m_{i} U_{ei}^{2} + \sum_{I} \frac{\mathcal{M}^{N}(M_{I})}{\mathcal{M}^{\nu}} M_{I} \Theta_{eI}^{2} \right]$$
Effective mass m_{ei}

Suppression Factor

$$f_{\beta}(M_{I}) = \frac{\mathcal{M}^{N}(M_{I})}{\mathcal{M}^{\nu}} = \frac{\Lambda_{\beta}^{2}}{\Lambda_{\beta}^{2} + M_{I}^{2}}$$
$$\Lambda_{\beta} = \sqrt{\langle \vec{p}_{F}^{2} \rangle} \sim 200 \text{ MeV}$$

$$\begin{split} \mathcal{M}^{\nu} &\supset \frac{1}{p^2 - m_i^2} \simeq \frac{1}{-\langle \vec{p}_F^2 \rangle} \\ \mathcal{M}^N &\supset \frac{1}{p^2 - M_I^2} \simeq \frac{1}{-(\langle \vec{p}_F^2 \rangle + M_I^2)} \end{split}$$

Faessler, Gonzalez, Kovalenko, Simkovic '14 Barea, Kotila, Iachello '15

Takehiko Asaka (Niigata Univ.)

Effective mass

$$m_{\rm eff} = \sum_{i=1,2,3} m_i U_{ei}^2 + \sum_I f_\beta(M_I) M_I \Theta_{eI}^2$$

active neutrinos ν_i HNLS N_I
 $m_{\rm eff}^{\nu}$ $m_{\rm eff}^N$

$$\begin{bmatrix} f_{\beta}(M_{I}) = \frac{\Lambda_{\beta}^{2}}{\Lambda_{\beta}^{2} + M_{I}^{2}} \\ \Lambda_{\beta} \sim 200 \text{ MeV} \end{bmatrix}$$

• $N_{\rm I}$ may give a significant contribution to $m_{\rm eff}$!

$$m_{\rm eff}^{N} = - \begin{cases} M_{I} \Theta_{eI}^{2} & (M_{I} \ll \Lambda_{\beta}) \\ \frac{\Lambda_{\beta}^{2}}{M_{I}^{2}} M_{I} \Theta_{eI}^{2} & (M_{I} \gg \Lambda_{\beta}) \end{cases}$$

NDBD and HNLs

- HNLs in the seesaw mechanism may give a significant, constructive or destructive contribution to effective mass depending on masses and mixing elements
- What can we learn about HNLs in the seesaw mechanism by forthcoming NDBD experiments ?

Masses and mixings of HNLs

 To make a simple discussion, we consider the minimal seesaw model with TWO right-handed neutrinos.

What if NDBD will not be observed ?

HNL may hide NDBD ($M_1 \ll M_2$)

Effective mass

KamLAND-Zen PRL117, 082503 ('16)

$$m_{\rm eff} = m_{\rm eff}^{\nu} + f_{\beta}(M_1) M_1 \Theta_{e1}^2 + f_{\beta}(M_2) M_2 \Theta_{e2}^2$$

 \square $m_{\text{lightest}} = 0$ in the minimal seesaw

$$|m_{\rm eff}^{\nu}| = \begin{bmatrix} 1.5 - 3.7 \text{ meV (NH)} \\ 19 - 48 \text{ meV (IH)} \end{bmatrix}$$

• Consider $M_1 \ll M_2$ (N_2 decouple)

 $m_{\rm eff} = m_{\rm eff}^{\nu} + f_{\beta}(M_1) M_1 \Theta_{e1}^2 = 0$

 \Rightarrow NDBD is hidden by HNL contribution

What's happen ?

Takehiko Asaka (Niigata Univ.)

Consequence 1

TA, Ishida, Tanaka arXiv:2012.13186

2022/03/09

HNL may hide NDBD $(M_1 \simeq M_2)$

• When all heavy neutrinos are degenerate $M_1 = M_2 = M_N$,

$$m_{\text{eff}} = m_{\text{eff}}^{\nu} + \sum_{I} f_{\beta}(M_{I})M_{I} \Theta_{eI}^{2} = m_{\text{eff}}^{\nu} + f_{\beta}(M_{N})\sum_{I} M_{N} \Theta_{eI}^{2}$$
$$= m_{\text{eff}}^{\nu} [1 - f_{\beta}(M_{N})]$$

- **D** This shows m_{eff} does not depend on the mixing Θ_{eI}
- Heavy neutrinos give destructive contribution
- **□** In this case, there is no bound on the mixing from $0\nu\beta\beta$ decay
- → $0\nu\beta\beta$ decay may be absent even if lepton number is violated in the seesaw mechanism

Seesaw relation between mixings

$$0 = \sum_{i} m_{i} U_{ei}^{2} + \sum_{I} M_{I} \Theta_{eI}^{2} = m_{eff}^{\nu} + \sum_{I} M_{I} \Theta_{eI}^{2}$$

What if NDBD will be observed ?

Consequence (Hierarchical HNLs)

• Range of mixing element $|\Theta_{e1}|^2$ is predicted depending on m_{eff}^{obs}

Takehiko Asaka (Niigata Univ.)

Consequence (Hierarchical HNLs)

• Range of mixing element $|\Theta_{e1}|^2$ is predicted

 $m_{\rm eff}^{\rm obs} = 100 \, {\rm meV} \, {\rm (red)}, \, 50 \, {\rm meV} \, {\rm (blue)}, \, 10 \, {\rm meV} \, {\rm (green)}$

- Effective mass
 - **D** Active neutrino contribution

$$m_{\rm eff}^{\nu} = \sum_i m_i U_{ei}^2$$

• HNL contribution

$$m_{\text{eff}}^{N} = \sum_{I} f_{\beta}(M_{I}) M_{I} \Theta_{eI}^{2}$$
$$f_{\beta}(M_{I}) = \frac{\Lambda_{\beta}^{2}}{\Lambda_{\beta}^{2} + M_{I}^{2}}$$

independent on decay nuclei

dependent on decay nuclei !

Multiple detection/non-detection by NDBD using different nuclei is crucial to reveal the properties of HNLs in the seesaw mechanism

Impact of different NDBD nuclei

• When NDBD would be observed for the nucleus $\Lambda_{\beta} = 200 \text{ MeV}$ $M_2 = 200 \text{ GeV}$

Summary

- Origin of neutrino masses is important for physics beyond SM
- SM with RH neutrinos are attractive scenarios
 - **Seesaw mechanism** for very small neutrino masses
 - **•** RH neutrinos (HNLs)
 - Baryon Asymmetry of the Universe (BAU)
 - Various scenarios depending on masses (Leptogenesis, Resonant Leptogenesis, Baryogenesis via oscillations
- Neutrinoless double beta decays
 - Light RH neutrinos may give a significant, constructive or destructive contribution
 - Multiple detections/non-detections by NDBD using different nuclei are crucial to reveal the properties of HNLs in the seesaw mechanism

BACKUP

Takehiko Asaka (Niigata Univ.) 2024/06/05

PHYSICAL REVIEW D 90, 096010 (2014)

Arbitrary mass Majorana neutrinos in neutrinoless double beta decay

Amand Faessler,¹ Marcela González,² Sergey Kovalenko,² and Fedor Šimkovic^{3,4,5}

TABLE I. The values of the nuclear matrix elements for the light and heavy neutrino mass mechanisms defined in Eqs. (11) and (12) and the parameters $\langle p^2 \rangle$ and \mathcal{A} of the interpolating formula specified in Eqs. (13)–(15). The calculations have been carried out within the QRPA with partial restoration of isospin symmetry [24]. Two different types of NN potential (CD–Bonn and Argonne) as well as quenched ($g_A = 1.00$) and unquenched ($g_A = 1.269$) values of the nucleon axial-vector constant have been considered. The cases presented are a) Argonne potential, $g_A = 1.00$; b) Argonne, $g_A = 1.269$; c) CD–Bonn, $g_A = 1.00$; and d) CD–Bonn, $g_A = 1.269$.

$M'^{0 u}_{ \nu}$				$M'{}^{0 u}_N$			$\sqrt{\langle p^2 \rangle}$ (MeV)				$A (10^{-10} \text{ yrs}^{-1})$				
а	b	с	d	a	b	С	d	а	b	С	d	a	b	С	d
0.463	0.541	0.503	0.594	29.0	40.3	49.0	66.3	173.0	189.0	216.0	231.0	0.541	1.05	1.55	2.83
3.886	5.157	4.211	5.571	204.0	287.0	316.0	433.0	159.0	163.0	190.0	193.0	2.55	5.05	6.12	11.5
3.460	4.642	3.746	5.018	186.0	262.0	287.0	394.0	161.0	165.0	192.0	194.0	9.12	18.1	21.7	40.9
2.154	2.717	2.341	2.957	132.0	184.0	202.0	276.0	171.0	180.0	203.0	212.0	9.30	18.1	21.8	40.7
4.185	5.402	4.525	5.850	244.0	342.0	371.0	508.0	167.0	174.0	198.0	204.0	24.6	48.3	56.8	107.
4.485	5.762	4.856	6.255	238.0	333.0	360.0	492.0	160.0	166.0	189.0	194.0	7.07	13.8	16.2	30.2
3.086	4.040	3.308	4.343	150.0	209.0	222.0	302.0	153.0	157.0	179.0	183.0	9.74	18.9	21.3	39.5
2.797	2.558	3.079	2.913	146.0	184.0	224.0	279.0	158.0	186.0	187.0	214.0	5.00	7.94	11.8	18.2
3.445	4.563	3.828	5.084	215.0	302.0	331.0	454.0	173.0	178.0	204.0	207.0	0.705	1.39	1.67	3.14
2.945	3.888	3.297	4.373	189.0	264.0	292.0	400.0	175.0	180.0	206.0	209.0	13.2	25.7	31.4	59.0
1.643	2.177	1.847	2.460	108.0	152.0	166.0	228.0	178.0	183.0	208.0	211.0	4.41	8.74	10.4	19.7
	a 0.463 3.886 3.460 2.154 4.185 4.485 3.086 2.797 3.445 2.945 1.643	abab0.4630.5413.8865.1573.4604.6422.1542.7174.1855.4024.4855.7623.0864.0402.7972.5583.4454.5632.9453.8881.6432.177	$\begin{array}{c c c c c c c c } \hline M'^{0\nu}_{\nu}\\\hline a & b & c\\\hline 0.463 & 0.541 & 0.503\\\hline 3.886 & 5.157 & 4.211\\\hline 3.460 & 4.642 & 3.746\\\hline 2.154 & 2.717 & 2.341\\\hline 4.185 & 5.402 & 4.525\\\hline 4.485 & 5.762 & 4.856\\\hline 3.086 & 4.040 & 3.308\\\hline 2.797 & 2.558 & 3.079\\\hline 3.445 & 4.563 & 3.828\\\hline 2.945 & 3.888 & 3.297\\\hline 1.643 & 2.177 & 1.847\\\hline \end{array}$	$\begin{array}{c c c c c c c } & M'^{0\nu}_{\nu} \\ \hline a & b & c & d \\ \hline 0.463 & 0.541 & 0.503 & 0.594 \\ \hline 3.886 & 5.157 & 4.211 & 5.571 \\ \hline 3.460 & 4.642 & 3.746 & 5.018 \\ \hline 2.154 & 2.717 & 2.341 & 2.957 \\ \hline 4.185 & 5.402 & 4.525 & 5.850 \\ \hline 4.485 & 5.762 & 4.856 & 6.255 \\ \hline 3.086 & 4.040 & 3.308 & 4.343 \\ \hline 2.797 & 2.558 & 3.079 & 2.913 \\ \hline 3.445 & 4.563 & 3.828 & 5.084 \\ \hline 2.945 & 3.888 & 3.297 & 4.373 \\ \hline 1.643 & 2.177 & 1.847 & 2.460 \\ \hline \end{array}$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$

Baryogenesis region

Klaric, Shaposhnikov, Timiryasov arXiv:2103.16545