

Dark matter: where are we?

By A. Ibarra **D**
DD $h^2 \approx 0.11$

- Four times more abundant than visible matter
- Does not directly interact with photons
- Mostly non-relativistic, charge neutral, very long lived/stable
- No such particle in the Standard Model
- No evidence at experiments so far

UNI GRAZ

Dark matter: where are we?

Dark matter: connecting to particle physics

DM relic density mechanism needs a number changing interaction

UNI GRAZ

- Global fits performed by taking into account collider, direct detection and indirect detection constraints
- For simplest WIMP DM, the scales are pushed higher

• Limits on Spin-Independent DM - nucleus scattering are being pushed to neutrino floor

UNI GRAZ

Flavoured DM

• Unexplored signatures include same-sign tops from Majorana DM

Acaroğlu et. al. arXiv:2312.09274

Dark flavoured dark matter

- If this is the reality of nature how do we look for it?
- Interesting scenarios due to possibility to obtain dark matter
- Generically known as (confining) Hidden Valleys or darkshowers/darkjets or SIMPs (for DM)

Strassler hep-ph/0607160

Dark flavoured dark matter

UV physics contains

- Gauge fields (gluons)
- Matter fields i.e. Dirac/Majorana fermions, Scalars (in representation N_r)
- This talk: **mass degenerate** Dirac fermions in fundamental representation
- \bullet Two discrete parameters $N_{c_{D}}, N_{f_{D}}$
- Two continuous parameters $m_{q_D}, \alpha_D(\mu)$ (UV)
	- Λ_D , m_{π_D}/Λ_D or m_{π_D} , m_{π_D}/m_{ρ_D} (IR)
- $N_{c_D} = 2$ and/or $N_{f_D} = 1$ for $SU(N_{c_D})$ special cases Francis et. al. arXiv:1809.09117,
- \bullet N_{f_D} $<$ 3 N_{c_D} to be chirally broken

Towards dark flavoured dark matter

- Novel scenarios
- Cosmologically viable dark matter theories
- New experimental signatures; potential discovery at hand
- Necessitates careful analysis

New avenues

DM longevity needs to be ensured

- Impose external symmetries
- Use accidental symmetries e.g. lightest baryon (proton) is stable in the SM due to baryon number conservation (needs asymmetry in dark sector) Cline and Perron arXiv:2204.00033
- Engineer models to ensure stability

 $SU(N_{C_D})$ Fund . rep . , $SU(N_{F_D}) = 2$,

Quantitative estimates from genuine non-perturbative physics are needed

 $\sim Tr[Q_D^2 T_0] = 0$

 $\rightarrow Q_D^2 \propto 1$

DM longevity needs to be ensured

- Impose external symmetries
- Use accidental symmetries e.g. lightest baryon (proton) is stable in the SM due to baricel number conservation (needs asymmetry in dark sector) Cline and Perron arXi \bigcirc 204.00033
- Engineer models to ensure stability

Quantitative estimates from genuine non-perturbative physics are needed

Experimental signatures

• Lead to new experimental signatures

Strassler et al hep-ph/0604261, Cohen et al arXiv:1503.00009, Schwaller et al arXiv:1502.05409, LLP community report arXiv:1903.04497, Kahlhoefer et.al. arXiv:1907.04346, Hofman et al arXiv:0803.1467, Strassler arXiv:0801.0629, Knapen et al arXiv:1612.00850

- Jets containing large missing energy
- Jets containing displaced vertices
- Jets with too many or too few tracks

- Experimental program to look for such signatures is just beginning
- Lack of understanding between theory space and experimental signatures
- Portals to the Standard Model play an important role

Experimental signatures

Chiral Lagrangian in isolation

 \bullet Chiral Lagrangian contains non-anomalous and anomalous interactions (if $n_{\pi_D} > 4$)

- $SU(N_{c_D})$ with $N_{f_D} = 2$ and $SO(N_{c_D})$ with $N_{f_D} = 1$ exhibit chiral symmetry breaking but no anomaly
- Witten construction needs certain homotopy conditions e.g. $\pi_4(SU(4)/SO(4))=0$

See **S.K.**, S. Mee, et al arXiv:2202.05191 for Sp(2N) J. Pomper, **S.K.**, arXiv: 2402.04176 for SO(N)

• Heavier states introduce new interesting dark matter and collider phenomenology

UNI

New non-Abelian group

J. Butterworth, L. Corpe, **SK**., X. Kong, M. Thomas arXiv:2105.08494

• Chiral Lagrangian contains non-anomalous and anomalous interaction terms

SM mediators

Appelquist et al arXiv:1402.6656 Bagnasco et. al. hep-ph/9310290

- $N_{c_{D}}=N_{f_{D}}=4$, in fundamental representation of $SU(N_{c_{D}})$; Lightest scalar baryon (dark proton) is dark matter
- In isolation, dark quarks are vector like; Higgs Yukawa breaks flavour symmetry

J. Butterworth, L. Corpe, **S.K.** et. al. arXiv:2105.08494

Either require low values of Higgs - dark quark effective Yukawa coupling or require very heavy dark matter

J. Butterworth, L. Corpe, **S.K.** et. al. arXiv:2105.08494

Either require low values of Higgs - dark quark effective Yukawa coupling or require very heavy dark matter

J. Butterworth, L. Corpe, **S.K.** et. al. arXiv:2105.08494

Either require low values of Higgs - dark quark effective Yukawa coupling or require very heavy dark matter

See also Hochberg et al. arXiv:1512.07917

- Introducing external mediator with non-trivial charges necessarily breaks multiples \rightarrow unstable dark mesons \rightarrow experimental signatures
- Rho mesons don't always share representation space with pions Pions → broken generators; Rho → unbroken generators

Sp(4)_c theories, pions 5-plet, rhos 10-plet representation

UNI

$U(1)_D$ gauged chiral Lagrangian

• Chiral Lagrangian contains non-anomalous and anomalous interaction terms

- Inputs from non perturbative calculations in terms of prediction of dark rho mass as a function of dark pion mass
- Delayed freeze out allows for larger masses thus Bullet cluster constraints can be evaded

Snowmass darkshowers (incl. **S.K.**, S. Mee, M. Strassler) arXiv:2202.05191

• Example: $N_{f_D} = 2$; $n_{\pi_D} = n_{\rho_D} = 3$; Doublet (π_D^{++}, π_D^{--}) ; $(\rho_D^{++}, \rho_D^{--})$ $\textsf{Singlets}\ (\pi_D^0); \ (\rho_D^0)$ ρ^0_D – Z^\prime mixing leads to visible decays

Strassler et al hep-ph/0604261 Cohen et al arXiv:1503.00009 Schwaller et al arXiv:1502.05409 LLP community report arXiv:1903.04497 Kahlhoefer et.al. arXiv:1907.04346 Hofman et al arXiv:0803.1467 Strassler arXiv:0801.0629 Knapen et al arXiv:1612.00850

-
- Jets with displaced vertices
- Jets with too many or too few tracks

- First guidelines for collider simulations of strongly interacting theories
- \bullet Effects due to $N_{c_{D}}, N_{f_{D}}$ ignored for now
- Dark meson mass fits from lattice results

$$
\frac{m_{\pi_D}}{\tilde{\Lambda}_D} = 5.5 \sqrt{\frac{m_{q_D}}{\tilde{\Lambda}_D}}
$$

$$
\frac{m_{\rho_D}}{\tilde{\Lambda}_D} = \sqrt{5.76 + 1.5 \frac{m_{\pi_D}^2}{\tilde{\Lambda}_D^2}}
$$

special cases $N_{f_D} = 1$ and/or $N_{c_D} = 2$

- Clear definitions for simulating semi-visible jets
- Possible light glueballs for $m_{\pi_D}/\tilde{\Lambda}_D > 2$
- Extensively tested and extended Pythia Hidden Valley module

 \bullet $p_{T}D$: jet transverse momentum dispersion $p_{T}D \approx \sqrt{2p_{T}^{2}/(2p_{T})}$

- The details of jet substructure depend on the details of the decay modes and number of stable/unstable particles
- Careful analysis design is necessary to circumvent too much dependence on jet properties

S.K., J. Pomper (arXiv: 2402.04176)

•
$$
SU(N_{c_D})
$$
: coset $SU(N_{f_D})_L \times SU(N_{f_D})_R/SU(N_{f_D})$;

$$
n_{\pi_D} = N_{f_D}^2 - 1 \to N_{f_D} = 3 \implies n_{\pi_D} = 8
$$

• $SO(N_{c_D})$: coset $SU(N_{f_D})/SO(N_{f_D})$;

$$
n_{\pi_D} = \frac{1}{2}(N_{f_D} + 2)(N_{f_D} - 1) \to N_{f_D} = 2 \to n_{\pi_D} = 9
$$

S.K., J. Pomper (arXiv: 2402.04176)

Witten, Nucl. Phys. B 223 (1983)

- Can not fix WZW by considering IR dynamics alone $\pi_4(SU(4)/SO(4)) \neq 0$
- WZW can be written by considering detailed UV to IR anomaly relations (if anomaly is present in IR, it must be present in the UV \rightarrow anomaly equation \rightarrow solution is WZW term)

Chu, Ho, and Zumino, Nuclear Physics B 475 (1996) Wess and Zumino, Physics Letters B 37 (1971)]

$$
\begin{aligned}\n\text{Wess-Zumino effective action} \\
S_{WZ}[\xi = (\eta', \pi)] &= \frac{D_C}{3\pi^2 f_\pi} \int_0^1 \mathrm{d}t \int_{S^4} \mathrm{Tr} \left\{ \xi \left((U[t\xi])^{-1} \mathrm{d}U[t\xi] \right)^4 \right\} \\
&\approx \frac{D_C}{15 f_\pi \pi^2} \epsilon^{\mu\nu\sigma\rho} \int_{S^4} \mathrm{d}^4 x \, \mathrm{Tr} \left\{ \pi \partial_\mu \pi \partial_\nu \pi \partial_\sigma \pi \partial_\rho \pi \right\}\n\end{aligned}
$$

Effects on relic density

• Dark matter relic abundance can be affected if η'_D is very close to π_D see also Choi et al arXiv:1801.07726,

Hochberg et al arXiv:1805.09345, Toro et al. arXiv:1801.05805

- A systematic analysis of strongly interacting theories is possible using
	- Connections to non-perturbative calculations
	- Analysis of underlying symmetries and underlying effective Lagrangians
- Presented several examples containing dark baryon and dark pion dark matter candidates
	- Typically matter content charged under the SM gauge group leads to heavy dark matter
	- Multiple relic density generation mechanisms can be engineered
- Portals lead to new interesting phenomenology, in particular in terms of dark-jets are colliders
	- Development of reliable event generators is important
	- Needs some understanding of hadronization in the dark sector

The Future is Wonderful XX NCTS Future workshop

On the Menu

Dark matter mass measurements? Dark matter interaction characteristics Dark matter global fits Large scale structure and dark matter Collider evidences and future prospects