

4 – 6 June 2024

@NYCU

Probing Axion-like Particles: Novel Detection Channels and Expanding Experimental Sensitivity for Dark Matter and Solar ALPs

<u>Reference</u> : PHYS. REV. D 108, 043029 (2023)

GREESHMA CHANDRABHANU PhD Scholar IoP, Academia Sinica

Co-authors: C. P. Wu, C.-P. Liu, L. Singh, J.-W. Chen, H.-C. Chi, M. K. Pandey, H. T. Wong

Outline

♦ Introduction

- ♦ Interactions
- Dark Matter ALPs
- ◆ Solar ALPs
- ♦ Analysis and Results
- **•** Summary & Future Prospects

Axions & ALPs : Portal to New Physics

✓ Some phenomena cannot be explained with current SM:

a. Strong CP problem

b. The existence of DM

✔ Axion - first introduced in 1970s as a solution to the strong CP problem in QCD

- Axionlike Particles (ALPs) Variants of QCD axions not necessarily solutions to the strong CP problem
- ✓ For QCD axions, axion-photon coupling ~ $1/f_a$, $m_a \sim 1/f_a$. For ALPs, $m_{ALP} \sim \Lambda^2 / f_a$ is nearly arbitrary.

✓ Sources of ALPs:

(a) Dark Matter

(b) Sun

Coupling of ALPs to photons (g_{agg}) - chances to explore and understand the physics beyond SM

Interactions

Lagrangian:

$$\mathcal{L}_{I} = -\frac{g_{a\gamma\gamma}}{4}\phi_{a}F_{\mu\nu}\widetilde{F}^{\mu\nu} - \sum_{f}\frac{g_{aff}}{2m_{f}}\partial_{\mu}\phi_{a}\overline{\Psi}_{f}(\gamma^{\mu}\gamma_{5})\Psi_{f}$$

Vacuum Decay,

 $a \rightarrow \gamma_1 + \gamma_2$

Three Inverse Primakoff (IP) interactions are:

 $a+A \rightarrow \begin{cases} \gamma + A & \text{IP}_{el} : \text{elastic scattering} \\ \gamma + A^* & \text{IP}_{ex} : \text{atomic excitation} \\ \gamma + A^+ + e^- & \text{IP}_{ion} : \text{atomic ionization} \end{cases}$

Double-pole Enhancement for IP_{ion}

Differential cross section of the ALP IP processes:

$$\begin{split} \frac{d^2\sigma}{dTd\Omega} &= \frac{\alpha_{em}g_{a\gamma\gamma}^2}{16\pi} \frac{E_a - T}{v_a E_a} \left(\frac{V_L}{(q^2)^2} \mathscr{R}_L + \frac{V_T}{(Q^2)^2} \mathscr{R}_T \right) \\ \mathscr{R}_{L/T} &= \sum \sum |\langle F|\rho/\vec{j}_\perp |I\rangle|^2 \, \delta \left(E_I - E_F - T\right) \\ V_L &= 2 \left[E_a^2 - m_a^2 + (E_a - T)^2\right] q^2 - (q^2)^2 \\ &- (T^2 - 2E_a T + m_a^2)^2 , \\ V_T &= \left[\frac{m_a^4}{2q^2} + \frac{Q^2}{2q^2} \right] \left[(m_a^4 - 4m_a^2 E_a T) \\ &+ (2m_a^2 + 4E_a^2 - 4E_a T + 2T^2) Q^2 - (Q^2)^2 \right] \\ & \text{For regulating the photon pole:} \left[\frac{1}{(Q^2 - \Lambda_T^2/4)^2 + T^2\Lambda_T^2} \Lambda_T \equiv n_A \sigma_\gamma(T) \right] \end{split}$$

Double-pole Enhancement for IP_{ion}

From kinematics:

$$Q^2 = m_a^2 - 2E_a(E_a - T)(1 - v_a \cos \theta)$$

♦ For Non-Relativistic ALP ($E_a \approx m_a$), IP_{ion} has double pole enhancement near T ≈ $m_a/2$

> EPA is a good approximation in $Q^2 = 0$ region

EPA:
$$\mathcal{R}_L = 0$$
, $\mathcal{R}_T = \frac{T}{2\pi^2 \alpha} \sigma_{\gamma}(T)$

Dark Matter ALPs

Solar ALPs

- → Relatively of low mass can travel in relativistic speed
- \rightarrow Dominant interaction channel IP_{el}

Analysis and Results

TEXONO NPC data

TEXONO

(a) Low energy data with point-contact germanium detector at **300 eV** to 12 keV_{ee}

(b) High-Purity Germanium detector data at 12 keV_{ee} to 3000 keV_{ee} $(1.98 \text{ keV}_{ee} \text{ at 1 MeV}_{ee})$

- low threshold & excellent energy resolution

Analysis and Results

XENONnT

XENONnT data with liquid xenon at 1 keV_{ee} to 140 keV_{ee} - **large exposure** while having low threshold and background.

Exclusion Plots – Solar ALP

Exclusion Plots – DM ALP

Global Exclusion Plot

Summary & Future Prospects

- > Identified **new detection channel** (**IP**_{ion}) to probe $g_{a\gamma\gamma}$ for laboratory-based experimental searches.
- Developed new sophisticated tools (FCA, RRPA, MCRRPA) for calculating cross-section for many-body systems.
- \blacktriangleright IP_{ion} channel has **discovery potential** for the search of ALPs.
- New tools are good at calculating cross-section above 80eV within 5% error.
- > Expanded the sensitivities of laboratory experiments in probing the $m_a g_{ayy}$ parameter space.
- IP_{ion} sensitivities of future projects (DARWIN) would exceed the cosmological stability bound for DM-ALPs.
- Comprehensive analysis of ALPs through a global approach considering the coupling between ALPs and photons, as well as ALPs and electrons.
- Translating experimental constraints of IP effects of this work to bounds on g_{aee} based on quantum loop effect.

Thank You!...

Photoabsorption cross section

FCA, RRPA & MCRRPA

Frozen Core Approximation (FCA)

- In FCA, core electrons in the system are treated as "frozen" or inert, meaning their positions are fixed and do not participate in the calculation of the e⁻- e⁻ interactions.
- By freezing the core electrons, the e⁻- e⁻ interactions are effectively treated as a perturbation on top of the frozen core.

Relativistic Random Phase Approximation (RRPA)

• For many-body systems RPA can be used to account for collective effects that influence the system's response to external perturbations.

Multi-Configuration Relativistic Random Phase Approximation (MCRRPA)

 MCRRPA is a theoretical framework used to calculate cross sections for nuclear reactions involving heavy nuclei, combining aspects of the multiconfiguration Dirac-Hartree-Fock (MCDHF) method with the RRPA to account for both relativistic effects and collective excitations.