Lattice investigations of the chimera baryon spectrum in the Sp(4) gauge theory 2024.06.06 (a) Future is Flavourful

National Yang-Ming Chiao-Tung University (NYCU), Taiwan

Swansea University Prifysgol Abertawe Ed Bennett, Biagio Lucini, Maurizio Piai

Jong-Wan Lee

UNIVERSITY OF PLYMOUTH Davide Vadacchino

SU(4)/Sp(4) composite Higgs model and lattice simulations

Ho Hsiao Supervisor: C.-J. David Lin National Yang-Ming Chiao-Tung University(NYCU), Taiwan

陽明交大 NYCU

Outline

- Introduction:
 - Sp(4) gauge theory: A Composite Higgs model
 - Chimera baryon
- Results
 - Projections
 - Mass hierarchy of chimera baryons
 - Chiral EFT and AIC
- Summary and Outlook

triviality of the scalar sector

\rightarrow SM is an EFT

Higgs boson as a bound state of new strong dynamics, which is lighter because of being a pseudo Nambu-Goldstone Boson.

Symmetries

- Global symmetry: G
- Subgroup: \mathcal{H} with $G_{\rm EW} \subset \mathcal{H}$
- Vacuum misalignment angle: θ_B
- Coset $\mathcal{G}/\mathcal{H} \to pNGBs$
- The scale of the EWSB: $v = f \sin \theta_B \ (f = |\vec{F}|)$

Composite Higgs Model Top partial compositeness

Composite Higgs Model Top partial compositeness Top partners:

- Share the same quantum number as the top
 - Spin-1/2 bound states emerging from the novel strong-interaction sector
 - Carry QCD colour charge

• Hypercolour-neutral

• Give the mass to the top by mixing with it

$$\begin{aligned} \mathcal{L}_{\text{mass}} &= -M\bar{T}_L T_R - y \frac{v}{\sqrt{2}} \bar{t}_L T_R - \lambda f \bar{T}_L t_R + \text{h.c.}, \qquad \Rightarrow m_t \simeq \frac{yv}{\sqrt{2}} \frac{\lambda f}{\sqrt{\lambda^2 f^2 + M^2}} \\ &= (\bar{t}_L \quad \bar{T}_L) \begin{pmatrix} 0 & \frac{yv}{\sqrt{2}} \\ \lambda f & M \end{pmatrix} \begin{pmatrix} t_R \\ T_R \end{pmatrix} + \text{h.c.}. \end{aligned}$$

→ Introducing higher representation

• SM Higgs is a composite object.

• SM Higgs is a composite object.

• Introduce a novel strong-interaction sector and hyperquarks.

- SM Higgs is a composite object.
- Introduce a novel strong-interaction sector and hyperquarks.
- Accommodate a light Higgs boson: SM Higgs is interpreted as one of the Goldstone modes (in the coset).

- SM Higgs is a composite object.
- Introduce a novel strong-interaction sector and hyperquarks.
- Accommodate a light Higgs boson: SM Higgs is interpreted as one of the Goldstone modes (in the coset).
- A UV complete theory.

- SM Higgs is a composite object.
- Introduce a novel strong-interaction sector and hyperquarks.
- Accommodate a light Higgs boson: SM Higgs is interpreted as one of the Goldstone modes (in the coset).
- A UV complete theory.
- Can embed top partial compositeness with a higher representation.

Name	Gauge group	ψ	χ	Baryon type
M1	SO(7)	$5 imes \mathbf{F}$	$6 imes \mathbf{Spin}$	$\psi\chi\chi$
M2	SO(9)	$5 imes \mathbf{F}$	$6 imes \mathbf{Spin}$	$\psi \chi \chi$
M3	SO(7)	$5 imes {f Spin}$	$6 imes \mathbf{F}$	$\psi\psi\chi$
M4	SO(9)	$5 imes {f Spin}$	$6 imes \mathbf{F}$	$\psi\psi\chi$
M5	Sp(4)	$5 imes \mathbf{A}_2$	$6 imes \mathbf{F}$	$\psi \chi \chi$
M6	SU(4)	$5 imes \mathbf{A}_2$	$3 imes ({f F}, {f ar F})$	$\psi \chi \chi$
M7	SO(10)	$5 imes \mathbf{F}$	$3 \times (\mathbf{Spin}, \overline{\mathbf{Spin}})$	$\psi \chi \chi$
M8	Sp(4)	$4 imes \mathbf{F}$	$6 imes \mathbf{A}_2$	$\psi\psi\chi$
M9	SO(11)	$4 imes \mathbf{Spin}$	$6 imes \mathbf{F}$	$\psi\psi\chi$
M10	SO(10)	$4 \times (\mathbf{Spin}, \overline{\mathbf{Spin}})$	$6 imes \mathbf{F}$	$\psi\psi\chi$
M11	SU(4)	$4 \times (\mathbf{F}, \overline{\mathbf{F}})$	$6 imes \mathbf{A}_2$	$\psi\psi\chi$
M12	SU(5)	$4 \times (\mathbf{F}, \overline{\mathbf{F}})$	$3 imes(\mathbf{A}_2,\overline{\mathbf{A}_2})$	$\psi\psi\chi,\psi\chi\chi$

*Weyl fermions

D. Franzosi and G. Ferretti, arXiv:1905.08273

Name	Gauge group	ψ	χ	Baryon type
M1	SO(7)	$5 imes \mathbf{F}$	$6 imes \mathbf{Spin}$	$\psi\chi\chi$
M2	SO(9)	$5 imes \mathbf{F}$	$6 imes {f Spin}$	$\psi\chi\chi$
M3	SO(7)	$5 imes {f Spin}$	$6 imes \mathbf{F}$	$\psi\psi\chi$
M4	SO(9)	$5 imes {f Spin}$	$6 imes \mathbf{F}$	$\psi\psi\chi$
M5	Sp(4)	$5 imes {f A}_2$	$6 imes \mathbf{F}$	$\psi\chi\chi$
M6	SU(4)	$5 imes {f A}_2$	$3 imes ({f F}, {f ar F})$	$\psi\chi\chi$
M7	SO(10)	$5 imes \mathbf{F}$	$3 \times (\mathbf{Spin}, \overline{\mathbf{Spin}})$	$\psi\chi\chi$
M8	Sp(4)	$4 imes \mathbf{F}$	$6 imes \mathbf{A}_2$	$\psi\psi\chi$
M9	SO(11)	$4 imes \mathbf{Spin}$	$6 imes \mathbf{F}$	$\psi\psi\chi$
M10	SO(10)	$4 \times (\mathbf{Spin}, \overline{\mathbf{Spin}})$	$6 imes \mathbf{F}$	$\psi\psi\chi$
M11	SU(4)	$4 \times (\mathbf{F}, \overline{\mathbf{F}})$	$6 imes \mathbf{A}_2$	$\psi\psi\chi$
M12	SU(5)	$4 \times (\mathbf{F}, \overline{\mathbf{F}})$	$3 imes(\mathbf{A}_2,\overline{\mathbf{A}_2})$	$\psi\psi\chi,\psi\chi\chi$

*Weyl fermions

D. Franzosi and G. Ferretti, arXiv:1905.08273

Name	Gauge group	ψ	χ	Baryon type
M1	SO(7)	$5 imes \mathbf{F}$	$6 imes \mathbf{Spin}$	$\psi\chi\chi$
M2	SO(9)	$5 imes \mathbf{F}$	$6 imes \mathbf{Spin}$	$\psi\chi\chi$
M3	SO(7)	$5 imes {f Spin}$	$6 imes \mathbf{F}$	$\psi\psi\chi$
M4	SO(9)	$5 imes {f Spin}$	$6 imes \mathbf{F}$	$\psi\psi\chi$
M5	Sp(4)	$5 imes {f A}_2$	$6 imes \mathbf{F}$	$\psi\chi\chi$
M6	SU(4)	$5 imes {f A}_2$	$3 imes ({f F}, {f ar F})$	$\psi\chi\chi$
M7	SO(10)	$5 imes \mathbf{F}$	$3 \times (\mathbf{Spin}, \overline{\mathbf{Spin}})$	$\psi\chi\chi$
M8	Sp(4)	$4 imes \mathbf{F}$	$6 imes \mathbf{A}_2$	$\psi\psi\chi$
M9	SO(11)	$4 \times \mathbf{Spin}$	$6 \times \mathbf{F}$	$\psi\psi\chi$
M10	SO(10)	4 × S The minimal model		$\psi\psi\chi$
M11	SU(4)	$4 \times (\mathbf{F}, \mathbf{F})$	$\frac{1\times10.1511.0502}{6\times A_2}$	$\psi\psi\chi$
M12	SU(5)	$4 \times (\mathbf{F}, \overline{\mathbf{F}})$	$3 imes(\mathbf{A}_2,\overline{\mathbf{A}_2})$	$\psi\psi\chi,\psi\chi\chi$

*Weyl fermions

D. Franzosi and G. Ferretti, arXiv:1905.08273

Our choice of model

- Sp(4) gauge theory with 2F+3AS Dirac fermions
- Breaking pattern:
 - $G/H = SU(4) \times SU(6) / Sp(4) \times SO(6)$ Enhanced global symmetry due to the (pseudo-) reality

- ► 4: SM Higgs doublet
- 1: made heavy in model building

(4F+6AS 2-component Weyl fermions)

SU(3) embedded in antisymmetric representation:

 $SU(6) \rightarrow SO(6) \supset SU(3)$ OCD colour SU(3)

Chimera Baryon

- Interpolating operators
- Λ type: $\mathcal{O}_{CB,\gamma^5} = (\bar{\psi}^{1\,a}\gamma^5\psi^{2\,b}) \Omega_{ad}\Omega_{bc}\chi^{k\,cd}$

(*J*, *R*) = (1/2,5) *top partner

- Σ type: $\mathcal{O}_{CB,\gamma^{\mu}} = \left(\bar{\psi}^{1\,a}\gamma^{\mu}\psi^{2\,b}\right)\Omega_{ad}\Omega_{bc}\chi^{k\,cd}$

Spin projection

a, *b*, *c*: hypercolour
Ω: 4 × 4 symplectic matrix *J*: spin *R*: irreducible rep. of the fundamental sector

- Strongly coupled theory \rightarrow lattice field theory
- Fermions on the grids, carrying colours, spin or flavours
- Gauge fields on the links
- Generating functional

$$Z = \int DUD\psi D\bar{\psi}e^{-S[U]}e^{-\int d^4x\bar{\psi}(D[U] + m)\psi}$$
$$= \int DU\det(D[U] + m)e^{-S[U]}$$

- Strongly coupled theory \rightarrow lattice field theory
- Fermions on the grids, carrying colours, spin or flavours
- Gauge fields on the links
- Generating functional

 $Z = \int DUD\psi D\bar{\psi}e^{-S[U]}e^{-\int d^4x\bar{\psi}(D[U] + m)\psi}$ $= \int DU\det(D[U] + m)e^{-S[U]}$

(Hybrid) Monte-Carlo simulation

- Fermions on the grids, carrying colours, spin or flavours
- Gauge fields on the links
- Generating functional

$$Z = \int DUD\psi D\bar{\psi}e^{-S[U]}e^{-\int d^{4}x\bar{\psi}(D[U] + m)\psi}$$
$$= \int DU\det(D[U] + m)e^{-S[U]}$$
Ouench calculation: de

- Strongly coupled theory \rightarrow lattice field theory
- Fermions on the grids, carrying colours, spin or flavours
- Gauge fields on the links
- Generating functional

 $Z = \int DUD\psi D\bar{\psi}e^{-S[U]}e^{-\int d^4x\bar{\psi}(D[U] + m)\psi}$ $= DU \det(D[U] + m)e^{-S[U]}$

Numerical calculations are accomplished by modifying the HiRep code. repository: <u>https://github.com/sa2c/HiRep</u> Del Debbio et al, arXiv:0805.2058

Extracting mass

• Mesonic 2-point correlation function

 $C(t) = \sum_{\vec{x}} e^{-i\vec{p}\cdot\vec{x}} \langle 0 \mid T \left[O(\vec{x},t)O^{\dagger}(0,0) \right] \mid 0$ $\sum_{\vec{x}} e^{-i\vec{p}\cdot\vec{x}} \langle 0 \mid \left[\bar{u}\gamma_5 d \right](\vec{x},t) \left[\bar{d}\gamma_5 u \right](0,0) \mid 0 \rangle$ $= \sum_{\vec{x}} e^{-i\vec{p}\cdot\vec{x}} \operatorname{Tr} \left[S_u(0,0;\vec{x},t)S_d^{\dagger}(0,0;\vec{x},t) \right]$ $S = M^{-1}q$

M is the Dirac operator calculated on a given background field.

$$\sum_{n} \frac{\langle 0 \mid O_{\pi} \mid n \rangle \langle n \mid O_{\pi}^{\dagger} \mid 0 \rangle}{2E_{n}} e^{-E_{n}t}$$

$$\frac{t \to \infty}{2E_{n}} \frac{1}{2m_{\pi}} |\langle 0 \mid O_{\pi} \mid \pi \rangle|^{2} e^{-M_{\pi}t}$$

• Effective Mass

$$M_{eff}(t) = -\ln\left[\frac{C(t+1)}{C(t)}\right]$$

Results quenched approximation

- Projections
- Mass hierarchy of chimera baryons
- Chiral EFT and AIC

Results quenched approximation

- Projections
- Mass hierarchy of chimera baryons
- Chiral EFT and AIC

Ensemble	β	$N_t \times N_s^3$	$\langle P \rangle$	ω_0/a
QB1	7.62	48×24^3	0.60192	1.448(3)
QB2	7.7	60×48^3	0.608795	1.6070(19)
QB3	7.85	60×48^3	0.620381	1.944(3)
QB4	8.0	60×48^3	0.630740	2.3149(12)
QB5	8.2	60×48^3	0.643228	2.8812(21)

Results quenched approximation

- Projections
- Mass hierarchy of chimera baryons
- Chiral EFT and AIC

 $\hat{m}_{\rm PS}$: fundamental \hat{m}_{ps} : Antisymmetric

 $\hat{a} \equiv a/\omega_0$ and $\hat{m} \equiv \omega_0 m$

Ensemble	β	$N_t \times N_s^3$	$\langle P \rangle$	ω_0/a
QB1	7.62	48×24^3	0.60192	1.448(3)
QB2	7.7	60×48^3	0.608795	1.6070(19)
QB3	7.85	60×48^3	0.620381	1.944(3)
QB4	8.0	60×48^3	0.630740	2.3149(12)
QB5	8.2	60×48^3	0.643228	2.8812(21)

Projection-CB two-point function

Interpolating operator

$$\mathcal{O}_{\rm CB}^{\gamma}(x) \equiv \left(Q^{ia}{}_{\alpha}(x)\Gamma^{1\,\alpha\beta}Q^{j\,b}{}_{\beta}(x)\right)\Omega_{ad}\Omega_{b}$$

▶ two-point function

$$C^{\gamma\gamma'}(t) \equiv \sum_{\vec{x}} \langle \mathcal{O}_{CB}^{\gamma}(x) \overline{\mathcal{O}_{CB}^{\gamma'}}(0) \rangle$$

= $-\sum_{\vec{x}} \left(\Gamma^2 S_{\Psi}^{k\,cd}{}_{c'd'}(x,0) \overline{\Gamma^2} \right)_{\gamma\gamma'} \Omega_{cl}$
 $\times \operatorname{Tr} \left[\Gamma^1 S_Q^b {}_{b'}(x,0) \overline{\Gamma^1} S_Q^a {}_{a'}(x,0) \right]$

 $b_{c}\Gamma^{2\,\delta\gamma}\Psi^{k\,cd}_{\gamma}(x)$

 $_{cb}\Omega^{b'c'}\Omega_{ad}\Omega^{d'a'}$

Projection-CB two-point function

Interpolating operator

$$\mathcal{O}_{\rm CB}^{\gamma}(x) \equiv \left(Q^{ia}{}_{\alpha}(x)\Gamma^{1\,\alpha\beta}Q^{jb}{}_{\beta}(x)\right)\Omega_{ad}\Omega_{bc}\Gamma^{2\,\delta\gamma}\Psi^{k\,cd}{}_{\gamma}(x)$$

▶ two-point function

$$C^{\gamma\gamma'}(t) \equiv \sum_{\vec{x}} \langle \mathcal{O}_{CB}^{\gamma}(x) \overline{\mathcal{O}_{CB}^{\gamma'}}(0) \rangle$$

= $-\sum_{\vec{x}} \left(\Gamma^2 S_{\Psi}^{k\,cd}{}_{c'd'}(x,0) \overline{\Gamma^2} \right)_{\gamma\gamma'} \Omega_{cl}$
 $\times \operatorname{Tr} \left[\Gamma^1 S_Q^b {}_{b'}(x,0) \overline{\Gamma^1} S_Q^a {}_{a'}(x,0) \right]$

At large Euclidean time $\rightarrow P_{e} \left[c_{e} e^{-m_{e}t} + c_{o} e^{-m_{o}(T-t)} \right] - P_{o} \left[c_{o} e^{-m_{o}t} + c_{e} e^{-m_{e}(T-t)} \right]$ $_{cb}\Omega^{b'c'}\Omega_{ad}\Omega^{d'a'}$ $P_e \equiv \frac{1}{2}(1+\gamma^0) \text{ and } P_o \equiv \frac{1}{2}(1-\gamma^0)$

Projection-Parity

The log plot of the chimera baryon correlators (left) and their effective mass plot (right) with the parity projection.

$$C_{\text{CB}}(t) \to P_e \left[c_e e^{-m_e t} + c_o e^{-m_o (T-t)} \right] - P_o \left[c_o e^{-m_o t} + c_e e^{-m_e (T-t)} \right]$$

Chimera Baryon

• Spin projector for Σ -type baryon:

$$(P^{3/2})^{ij} = \delta^{ij} - \frac{1}{3}\gamma^i\gamma^j$$
$$(P^{1/2})^{ij} = \frac{1}{3}\gamma^i\gamma^j$$

• Two-point function

$$C_{ij}(t) = \sum_{\vec{x}} \left\langle \mathcal{O}_{CB}^{i}(x) \bar{\mathcal{O}}_{CB}^{j}(0) \right\rangle \text{ with } \mathcal{O}$$
$$\rightarrow C_{\Sigma}^{1/2}(t) = \operatorname{Tr} \left[\left(P^{1/2} \right)^{ij} C_{jk}(t) \right]$$

 $\widehat{\mathcal{O}}_{CB}^{i} = \left(\bar{\psi}\gamma^{i}\psi\right)\chi$

Results Projection-Spin

Comparison of effective mass plot between two spin projected states and the state without spin projection.

Results Mass hierarchy

fermion mass. The lattice size is 60×48^3 with $\beta = 8.0$.

heavy F fermion mass

light F fermion mass

Effective mass plot of chimera baryons calculated with different F fermion masses, at fixed AS

Fitting

Apply tree-level baryon chiral perturbation theory

 $m_{\rm CB} = m_{CB}^{\chi} + F_2 \hat{m}_{\rm PS}^2 + A_2 \hat{m}_{\rm ps}^2 + L_1 \hat{a}$ $+ F_3 \hat{m}_{\rm PS}^3 + A_3 \hat{m}_{\rm ps}^3 + L_{2F} \hat{a} \hat{m}_{\rm PS}^2 + L_{2A} \hat{a} \hat{m}_{\rm ps}^2$ $+ F_4 \hat{m}_{\rm PS}^4 + A_4 \hat{m}_{\rm ps}^4 + C_4 \hat{m}_{\rm PS}^2 \hat{m}_{\rm ps}^2$

Fitting

Apply tree-level baryon chiral perturbation theory

 $m_{\rm CB} = m_{CB}^{\chi} + F_2 \hat{m}_{\rm PS}^2 + A_2 \hat{m}_{\rm ps}^2 + L_1 \hat{a}$ $+ F_3 \hat{m}_{\rm PS}^3 + A_3 \hat{m}_{\rm ps}^3 + L_{2F} \hat{a} \hat{m}_{\rm PS}^2 + L_{2A} \hat{a} \hat{m}_{\rm ps}^2$ $+ F_4 \hat{m}_{\rm PS}^4 + A_4 \hat{m}_{\rm ps}^4 + C_4 \hat{m}_{\rm PS}^2 \hat{m}_{\rm ps}^2$

Returning large $\chi^2/N_{d.o.f.}$

Optimal search

- Try including different order of corrections
- Calculate AICs for each data set, and scan through all the possible cuts:
 - \implies Fix the cut value for \hat{m}_{PS} and vary \hat{m}_{ps}
 - \blacksquare Increase the fixed value of \hat{m}_{PS}

ns n

Optimal search

- Try including different order of corrections
- Calculate AICs for each data set, and scan through all the possible cuts:
 - \implies Fix the cut value for \hat{m}_{PS} and vary \hat{m}_{ps}
 - \rightarrow Increase the fixed value of \hat{m}_{PS}
- Goodness of a fit: Akaike information criterion (AIC)

$$AIC(M, N_{cut}) \equiv \chi^2 + 2k + 2N_{cut}$$

Probability weight

$$W(\mathbf{M}, N_{\text{cut}}) = \frac{1}{\mathcal{N}} \exp\left[-\frac{1}{2}\operatorname{AIC}(\mathbf{M}, N_{\text{cut}})\right]$$

Optimal search

- Try including different order of corrections
- Calculate AICs for each data set, and scan through all the possible cuts:
 - \implies Fix the cut value for \hat{m}_{PS} and vary \hat{m}_{ps}
 - \rightarrow Increase the fixed value of \hat{m}_{PS}
- Goodness of a fit: Akaike information criterion (AIC)

William I. Jay and Ethan T. Neil [2008.01069]

AIC(M,
$$N_{\text{cut}}$$
) $\equiv \chi^2 + 2k + 2N_{\text{cut}}$

Probability weight

$$W(\mathbf{M}, N_{\text{cut}}) = \frac{1}{\mathcal{N}} \exp \left[-\frac{1}{2} \operatorname{AIC}(\mathbf{M}, N_{\text{cut}})\right]$$

William I. Jay and Ethan T. Neil [2008.01069]

Optimal search

- Try including different order of corrections
- Calculate AICs for each data set, and scan through all the possible cuts:
 - \implies Fix the cut value for \hat{m}_{PS} and vary \hat{m}_{ps}
 - \rightarrow Increase the fixed value of \hat{m}_{PS}
- Goodness of a fit: Akaike information criterion (AIC)

William I. Jay and Ethan T. Neil [2008.01069]

AIC(M,
$$N_{\text{cut}}$$
) $\equiv \chi^2 + 2k + 2N_{\text{cut}}$

Probability weight

$$W(\mathbf{M}, N_{\text{cut}}) = \frac{1}{\mathcal{N}} \exp \left[-\frac{1}{2} \operatorname{AIC}(\mathbf{M}, N_{\text{cut}})\right]$$

Fitting

Apply tree-level baryon chiral perturbation theory

 $m_{\rm CB} = m_{CB}^{\chi} + F_2 \hat{m}_{\rm PS}^2 + A_2 \hat{m}_{\rm ps}^2 + L_1 \hat{a}$ $+ F_3 \hat{m}_{\rm PS}^3 + A_3 \hat{m}_{\rm ps}^3 + L_{2F} \hat{a} \hat{m}_{\rm PS}^2 + L_{2A} \hat{a} \hat{m}_{\rm ps}^2$ $+ F_4 \hat{m}_{\rm PS}^4 + A_4 \hat{m}_{\rm ps}^4 + C_4 \hat{m}_{\rm PS}^2 \hat{m}_{\rm ps}^2$

Still returning large $\chi^2/N_{d.o.f.}$

Fitting

Apply tree-level baryon chiral perturbation theory

 $m_{\rm CB} = m_{CB}^{\chi} + F_2 \hat{m}_{\rm PS}^2 + A_2 \hat{m}_{\rm ps}^2 + L_1 \hat{a}$ $+ F_3 \hat{m}_{\rm PS}^3 + A_3 \hat{m}_{\rm ps}^3 + L_{2F} \hat{a} \hat{m}_{\rm PS}^2 + L_{2A} \hat{a} \hat{m}_{\rm ps}^2$ $+ F_4 \hat{m}_{\rm PS}^4 + A_4 \hat{m}_{\rm ps}^4 + C_4 \hat{m}_{\rm PS}^2 \hat{m}_{\rm ps}^2$

Fitting

Apply tree-level baryon chiral perturbation theory

 $m_{\rm CB} = m_{CB}^{\chi} + F_2 \hat{m}_{\rm PS}^2 + A_2 \hat{m}_{\rm ps}^2 + L_1 \hat{a}$ + $F_3 \hat{m}_{\rm PS}^3 + A_3 \hat{m}_{\rm ps}^3 + L_{2F} \hat{a} \hat{m}_{\rm PS}^2 + L_{2A} \hat{a} \hat{m}_{\rm ps}^2$ + $F_4 \hat{m}_{\rm PS}^4 + A_4 \hat{m}_{\rm ps}^4 + C_4 \hat{m}_{\rm PS}^2 \hat{m}_{\rm ps}^2$

Fitting

Apply tree-level baryon chiral perturbation theory

 $m_{\rm CB} = m_{CB}^{\chi} + F_2 \hat{m}_{\rm PS}^2 + A_2 \hat{m}_{\rm ps}^2 + L_1 \hat{a}$ + $F_3 \hat{m}_{\rm PS}^3 + A_3 \hat{m}_{\rm ps}^3 + L_{2F} \hat{a} \hat{m}_{\rm PS}^2 + L_{2A} \hat{a} \hat{m}_{\rm ps}^2$ + $F_4 \hat{m}_{\rm PS}^4 + A_4 \hat{m}_{\rm ps}^4 + C_4 \hat{m}_{\rm PS}^2 \hat{m}_{\rm ps}^2$

Fitting

Apply tree-level baryon chiral perturbation theory

 $m_{\rm CB} = m_{CB}^{\chi} + F_2 \hat{m}_{\rm PS}^2 + A_2 \hat{m}_{\rm ps}^2 + L_1 \hat{a}$ $+ F_3 \hat{m}_{\rm PS}^3 + A_3 \hat{m}_{\rm ps}^3 + L_{2F} \hat{a} \hat{m}_{\rm PS}^2 + L_{2A} \hat{a} \hat{m}_{\rm ps}^2$ $+ F_4 \hat{m}_{\rm PS}^4 + A_4 \hat{m}_{\rm ps}^4 + C_4 \hat{m}_{\rm PS}^2 \hat{m}_{\rm ps}^2$

MF4

Fitting

Apply tree-level baryon chiral perturbation theory

 $m_{\rm CB} = m_{CB}^{\chi} + F_2 \hat{m}_{\rm PS}^2 + A_2 \hat{m}_{\rm ps}^2 + L_1 \hat{a} + F_3 \hat{m}_{\rm PS}^3 + A_3 \hat{m}_{\rm ps}^3 + L_{2F} \hat{a} \hat{m}_{\rm PS}^2 + L_{2A} \hat{a} \hat{m}_{\rm ps}^2 + F_4 \hat{m}_{\rm PS}^4 + A_4 \hat{m}_{\rm ps}^4 + C_4 \hat{m}_{\rm PS}^2 \hat{m}_{\rm ps}^2 - \frac{1}{MF4} - \frac{1}{MA4}$

Fitting

Apply tree-level baryon chiral perturbation theory

 $m_{\rm CB} = m_{CB}^{\chi} + F_2 \hat{m}_{\rm PS}^2 + A_2 \hat{m}_{\rm ps}^2 + L_1 \hat{a} + F_3 \hat{m}_{\rm PS}^3 + A_3 \hat{m}_{\rm ps}^3 + L_{2F} \hat{a} \hat{m}_{\rm PS}^2 + L_{2A} \hat{a} \hat{m}_{\rm ps}^2 + F_4 \hat{m}_{\rm PS}^4 + A_4 \hat{m}_{\rm ps}^4 + C_4 \hat{m}_{\rm PS}^2 \hat{m}_{\rm ps}^2 - \frac{1}{MF4} \frac{1}{MA4} \frac{1}{MC4}$

Apply tree level baryon chiral perturbation theory

M2 $m_{CB} = m_{CB}^{\chi} + F_2 \hat{m}_{PS}^2 + A_2 \hat{m}_{ps}^2 + L_1 \hat{a}$ M3 $+ F_3 \hat{m}_{PS}^3 + A_3 \hat{m}_{ps}^3 + L_{2F} \hat{a} \hat{m}_{PS}^2 + L_{2A} \hat{a} \hat{m}_{ps}^2$ $+ F_4 \hat{m}_{PS}^4 + A_4 \hat{m}_{ps}^4 + C_4 \hat{m}_{PS}^2 \hat{m}_{ps}^2$ <u>MF4</u> MA4 M2C

probability weight

$$W(\mathbf{M}, N_{\text{cut}}) = \frac{1}{\mathcal{N}} \exp\left[-\frac{1}{2}\operatorname{AIC}(\mathbf{M}, N_{\text{cut}})\right]$$

Results Fittings of Σ_{CB}

Apply tree level baryon chiral perturbation theory

M2 $m_{CB} = m_{CB}^{\chi} + F_2 \hat{m}_{PS}^2 + A_2 \hat{m}_{ps}^2 + L_1 \hat{a}$ M3 $+ F_3 \hat{m}_{PS}^3 + A_3 \hat{m}_{ps}^3 + L_{2F} \hat{a} \hat{m}_{PS}^2 + L_{2A} \hat{a} \hat{m}_{ps}^2$ $+ F_4 \hat{m}_{PS}^4 + A_4 \hat{m}_{ps}^4 + C_4 \hat{m}_{PS}^2 \hat{m}_{ps}^2$ <u>MF4</u> MA4 M2C

Apply tree level baryon chiral perturbation theory

M2 $m_{CB} = m_{CB}^{\chi} + F_2 \hat{m}_{PS}^2 + A_2 \hat{m}_{ps}^2 + L_1 \hat{a}$ M3 $+ F_3 \hat{m}_{PS}^3 + A_3 \hat{m}_{ps}^3 + L_{2F} \hat{a} \hat{m}_{PS}^2 + L_{2A} \hat{a} \hat{m}_{ps}^2$ $+ F_4 \hat{m}_{PS}^4 + A_4 \hat{m}_{ps}^4 + C_4 \hat{m}_{PS}^2 \hat{m}_{ps}^2$ <u>MF4</u> MA4 M2C

Results **Cross check**

Apply tree-level baryon chiral perturbation theory

 $m_{\rm CB} = m_{CB}^{\chi} + F_2 \hat{m}_{\rm PS}^2 + A_2 \hat{m}_{\rm ps}^2 + L_1 \hat{a}$ $+F_3\hat{m}_{PS}^3+A_3\hat{m}_{ps}^3+L_{2F}\hat{a}\hat{m}_{PS}^2+L_{2A}\hat{a}\hat{m}_{ps}^2$ $+F_4\hat{m}_{PS}^4+A_4\hat{m}_{Ps}^4+C_4\hat{m}_{PS}^2\hat{m}_{Ps}^2$

Results **Cross check**

At a fixed \hat{m}_{PS}^{as} , the fitting function becomes

 $m_{\rm CB} = m_{CB}^{\chi} + F_2 \hat{m}_{\rm PS}^2 + A_2 \hat{m}_{\rm ps}^2 + L_1 \hat{a}$ $+F_3\hat{m}_{PS}^3 + A_3\hat{m}_{ps}^3 + L_{2F}\hat{a}\hat{m}_{PS}^2 + L_{2A}\hat{a}\hat{m}_{ps}^2$ $+F_4\hat{m}_{PS}^4 + A_4\hat{m}_{ps}^4 + C_4\hat{m}_{PS}^2\hat{m}_{ps}^2$

Cross check

At a fixed \hat{m}_{PS}^{as} , the fitting function becomes

$$m_{\rm CB} = m_{CB}^{\chi} + A_2 \hat{m}_{\rm PS}^{as\,2} + L_1 \hat{a} + A_3 \hat{m}_{\rm PS}^{as\,3} + L_{2A} \hat{a}$$
$$+ F_2 \hat{m}_{\rm PS}^{f^{-2}} + C_4 \hat{m}_{\rm PS}^{f^{-2}} \hat{m}_{\rm PS}^{as\,2} + L_{2F} \hat{a} \hat{m}$$
$$+ F_3 \hat{m}_{\rm PS}^{f^{-3}} + F_4 \hat{m}_{\rm PS}^{f^{-4}}$$

 $\Rightarrow \tilde{m}_{CB}^{\chi}(\hat{m}_{\rm ps}, A, L, \hat{a}) + \tilde{F}_2(\hat{m}_{\rm ps}, C, L, \hat{a})\hat{m}_{\rm PS}^2 + \tilde{F}_3\hat{m}_{\rm PS}^3 + F_4\hat{m}_{\rm PS}^{f^{4}}$

 $\hat{a}\hat{m}_{PS}^{as\,2} + A_4\hat{m}_{PS}^{as\,4}$ $h_{\rm PS}^{f^{-2}}$

Cross check

At a fixed \hat{m}_{ps}

$$m_{\text{CB}} = \tilde{m}_{CB}^{\chi}(\hat{m}_{\text{ps}}, A, L, \hat{a}) + \tilde{F}_{2}(\hat{m}_{\text{ps}}, C, L, \hat{a})\hat{m}_{\text{PS}}^{2} + \tilde{F}_{3}\hat{m}_{\text{F}}^{3}$$

Cross check

At a fixed \hat{m}_{PS}

 $m_{\text{CB}} = \tilde{m}_{CB}^{\chi}(\hat{m}_{\text{PS}}, F, L, \hat{a})$ $+\tilde{A}_2(\hat{m}_{\text{PS}}, C, L, \hat{a})\hat{m}_{\text{PS}}^2 + \tilde{A}_3\hat{m}_{\text{PS}}^3$

CB	Ansatz	$\hat{m}^{\chi}_{ ext{CB}}$	F_2	A_2	L_1	F_3	A_3	L_{2F}	L_{2A}	C_4
$\Lambda_{ m CB}$	MC4	1.004(30)	0.692(67)	0.384(12)	-0.14(46)	-0.14(33)	-0.092(46)	0.091(76)	0.003(13)	-0.024(60)
Σ_{CB}	MC4	0.842(21)	0.806(81)	0.558(13)	-0.14(33)	-0.24(68)	-0.162(77)	0.193(62)	-0.01(16)	-0.079(62)
$\Sigma^*_{ m CB}$	M3	1.258(35)	0.36(10)	0.391(31)	-0.33(53)	-0.06(85)	-0.12(16)	0.335(86)	0.006(30)	-

Massless-continuum limit

Comparison with masses of mesons in quenche approximation for fermions in the fundamenta (blue bands) and antisymmetric (red bands representation of Sp(4), and glueballs (yellow at massless-continuum limit.

<\$ 2.0 ·

 $2.5 \cdot$

4.0

 $1.0 \cdot$

0.5

Summary and Outlook

Composite Higgs model Chimera baryons

- Λ and Σ : <u>Top partner</u> candidates in our model
- Σ^* with spin-3/2
- **Projection** (Spin and Parity)
- The mass hierarchy of chimera baryons model building
- Chiral effective field theory
- **Dynamical studies**

• Generate the ensemble in quenched approximation with the standard Wilson action

$$S_g \equiv \beta \sum_{x} \sum_{\mu < \nu} \left(1 - \frac{1}{2N} \operatorname{ReTr} \mathscr{P}_{\mu\nu} \right), \text{ with } \mathscr{P}_{\mu\nu}(x) \equiv U_{\mu}(x) U_{\nu}(x + \hat{\mu}) U_{\mu}^{\dagger}(x + \hat{\nu}) U_{\nu}^{\dagger}(x).$$

•Consider the Wilson fermion for the spectroscopic measurements

$$D_m^R \psi_j^R(x) \equiv (4/a + m_0^R) \psi_j^R(x) \\ -\frac{1}{2a} \sum_{\mu} \left\{ (1 - \gamma_{\mu}) U_{\mu}^R(x) \psi_j^R(x + \hat{\mu}) + (1 + \gamma_{\mu}) U_{\mu}^{R, \dagger}(x - \hat{\mu}) \psi_j^R(x - \hat{\mu}) \right\}$$

٠

Scale setting: gradient-flow

with an extra dimension, *flow time t*:

$$\frac{dB_{\mu}(t,x)}{dt} = D_{\nu}G_{\nu\mu}(t,x), \quad B_{\mu}(t,x)|_{t=0} = A_{\mu}(t,x)$$

• Lüscher demonstrated that the action density can be related to the renormalised coupling [Martin Lüscher. 2009]

 $L_{u}(t,x)$

Scale setting: gradient-flow

with an extra dimension, *flow time t*:

$$\frac{dB_{\mu}(t,x)}{dt} = D_{\nu}G_{\nu\mu}(t,x), \quad B_{\mu}(t,x)|_{t=0} = A_{\mu}(t,x)$$

Scale setting: gradient-flow

with an extra dimension, *flow time t*:

$$\frac{dB_{\mu}(t,x)}{dt} = D_{\nu}G_{\nu\mu}(t,x), \quad B_{\mu}(t,x)|_{t=0} = A_{\mu}(t,x)$$

• Setting the scale:

 $\alpha(\mu) = k_{\alpha} t^2 \left\langle E(t) \right\rangle \equiv k_{\alpha} \varepsilon(t)$

with
$$\mu = 1/\sqrt{8t}$$
 and $E(t) = -\frac{1}{2} \operatorname{Tr}(G_{\mu\nu}G_{\mu\nu})$

Scale setting: gradient-flow

with an extra dimension, *flow time t*:

$$\frac{dB_{\mu}(t,x)}{dt} = D_{\nu}G_{\nu\mu}(t,x), \quad B_{\mu}(t,x)|_{t=0} = A_{\mu}(t,x)$$

• Setting the scale:

 $\underline{\alpha(\mu)} = k_{\alpha} t^2 \left\langle E(t) \right\rangle \equiv k_{\alpha} \varepsilon(t)$

renormalised coupling

with
$$\mu = 1/\sqrt{8t}$$
 and $E(t) = -\frac{1}{2} \operatorname{Tr}(G_{\mu\nu}G_{\mu\nu})$

Scale setting: gradient-flow

with an extra dimension, *flow time t*:

$$\frac{dB_{\mu}(t,x)}{dt} = D_{\nu}G_{\nu\mu}(t,x), \quad B_{\mu}(t,x)|_{t=0} = A_{\mu}(t,x)$$

• Setting the scale: analytically computable $\alpha(\mu) = k_{\alpha} t^2 \left\langle E(t) \right\rangle \equiv k_{\alpha} \varepsilon(t)$ renormalised coupling

with
$$\mu = 1/\sqrt{8t}$$
 and $E(t) = -\frac{1}{2} \operatorname{Tr}(G_{\mu\nu}G$

Scale setting: gradient-flow

with an extra dimension, *flow time t*:

$$\frac{dB_{\mu}(t,x)}{dt} = D_{\nu}G_{\nu\mu}(t,x), \quad B_{\mu}(t,x)|_{t=0} = A_{\mu}(t,x)$$

• Setting the scale: analytically computable $\alpha(\mu) = k_{\alpha} t^2 \left\langle E(t) \right\rangle \equiv k_{\alpha} \varepsilon(t)$ renormalised coupling 1

with
$$\mu = 1/\sqrt{8t}$$
 and $E(t) = -\frac{1}{2} \text{Tr}(G_{\mu\nu}G$

• Lüscher demonstrated that the action density can be related to the renormalised coupling [Martin Lüscher. 2009]

 $L_{\mu}(t,x)$

ρυν

Scale setting: gradient-flow

with an extra dimension, *flow time t*:

$$\frac{dB_{\mu}(t,x)}{dt} = D_{\nu}G_{\nu\mu}(t,x), \quad B_{\mu}(t,x)|_{t=0} = A_{\mu}(t,x)$$

• Setting the scale: analytically computable $\alpha(\mu) = k_{\alpha} t^2 \left\langle E(t) \right\rangle \equiv k_{\alpha} \varepsilon(t)$ renormalised coupling 1

with
$$\mu = 1/\sqrt{8t}$$
 and $E(t) = -\frac{1}{2} \text{Tr}(G_{\mu\nu}G$

• Lüscher demonstrated that the action density can be related to the renormalised coupling [Martin Lüscher. 2009]

 $L_{\mu}(t,x)$

 $\rightarrow \varepsilon(t)|_{t=t_0} = \varepsilon_0$ A constant one can choose

ρυν

Scale setting: gradient-flow

with an extra dimension, *flow time t*:

$$\frac{dB_{\mu}(t,x)}{dt} = D_{\nu}G_{\nu\mu}(t,x), \quad B_{\mu}(t,x)|_{t=0} = A_{\mu}(t,x)$$

• Setting the scale: analytically computable

$$\underline{\alpha(\mu)} = k_{\alpha}t^{2} \langle E(t) \rangle \equiv \underline{k_{\alpha}}\varepsilon(t) \longrightarrow \varepsilon(t) |_{t=t_{0}} = \varepsilon_{0} \text{ A constant one can choos}$$

renormalised coupling $\Rightarrow W(t) = t \frac{\mathrm{d}\varepsilon(t)}{\mathrm{d}t}$
with $\mu = 1/\sqrt{8t}$ and $E(t) = -\frac{1}{2}\mathrm{Tr}(G_{\mu\nu}G_{\mu\nu}). \Rightarrow W(t) |_{t=\omega_{0}^{2}} = W_{0}$

• Lüscher demonstrated that the action density can be related to the renormalised coupling [Martin Lüscher. 2009]

 $L_{\mu}(t,x)$

Scale setting: gradient-flow

with an extra dimension, *flow time t*:

$$\frac{dB_{\mu}(t,x)}{dt} = D_{\nu}G_{\nu\mu}(t,x), \quad B_{\mu}(t,x)|_{t=0} = A_{\mu}(t,x)$$

• Setting the scale: analytically computable

$$\underline{\alpha(\mu)} = k_{\alpha}t^{2} \langle E(t) \rangle \equiv \underline{k_{\alpha}}\varepsilon(t) \longrightarrow \varepsilon(t) |_{t=t_{0}} = \varepsilon_{0} \text{ A constant one can choos}$$

renormalised coupling $\Rightarrow W(t) = t \frac{d\varepsilon(t)}{dt}$
with $\mu = 1/\sqrt{8t}$ and $E(t) = -\frac{1}{2}\text{Tr}(G_{\mu\nu}G_{\mu\nu}). \Rightarrow W(t) |_{t=\omega_{0}^{2}} = \underline{W_{0}}$

• Lüscher demonstrated that the action density can be related to the renormalised coupling [Martin Lüscher. 2009]

 $L_{\mu}(t,x)$

- Meson spectrum with quenched fundamental and antisymmetric fermions
- Meson spectrum with $N_f = 2$ dynamical fundamental fermions
- Meson spectrum with $n_f = 3$ dynamical antisymmetric fermions
- Fully dynamical 2F + 3AS fermions
 - Chimera baryon (quenched studies)
 - 4-fermion operator matrix elements (relevant to generating Higgs mass)

- Meson spectrum with quenched fundamental and antisymmetric fermions arXiv:1912.06505
- Meson spectrum with $N_f = 2$ dynamical fundamental fermions
- Meson spectrum with $n_f = 3$ dynamical antisymmetric fermions
- Fully dynamical 2F + 3AS fermions
 - Chimera baryon (quenched studies)
 - 4-fermion operator matrix elements (relevant to generating Higgs mass)

- Meson spectrum with quenched fundamental and antisymmetric fermions arXiv:1912.06505 • Meson spectrum with $N_f = 2$ dynamical fundamental fermions arXiv:1909.12662
- Meson spectrum with $n_f = 3$ dynamical antisymmetric fermions
- Fully dynamical 2F + 3AS fermions
 - Chimera baryon (quenched studies)
 - 4-fermion operator matrix elements (relevant to generating Higgs mass)

- Meson spectrum with quenched fundamental and antisymmetric fermions arXiv:1912.06505 • Meson spectrum with $N_f = 2$ dynamical fundamental fermions arXiv:1909.12662
- Meson spectrum with $n_f = 3$ dynamical antisymmetric fermions
- Fully dynamical 2F + 3AS fermions
 - Chimera baryon (quenched studies)
 - 4-fermion operator matrix elements (relevant to generating Higgs mass)

(Ongoing)

- Meson spectrum with quenched fundame
- Meson spectrum with $N_f = 2$ dynamical
- Meson spectrum with $n_f = 3$ dynamical a
- Fully dynamical 2F + 3AS fermions
 - Chimera baryon (quenched studies)
 - 4-fermion operator matrix elements (relevant to generating Higgs mass)

ental and antisymmetric fermions	arXiv:1912.06505
fundamental fermions	arXiv:1909.12662
antisymmetric fermions	(Ongoing)

arXiv:2202.05516 & 2306.11649

- Meson spectrum with $N_f = 2$ dynamical fundamental fermions
- Meson spectrum with $n_f = 3$ dynamical antisymmetric fermions
- Fully dynamical 2F + 3AS fermions
 - Chimera baryon (quenched studies)
 - 4-fermion operator matrix elements (relevant to generating Higgs mass)

• Meson spectrum with quenched fundamental and antisymmetric fermions arXiv:1912.06505 arXiv:1909.12662

(Ongoing)

arXiv:2202.05516 & 2306.11649

(This work)

- Meson spectrum with $N_f = 2$ dynamical fundamental fermions
- Meson spectrum with $n_f = 3$ dynamical antisymmetric fermions
- Fully dynamical 2F + 3AS fermions
 - Chimera baryon (quenched studies)
 - 4-fermion operator matrix elements (relevant to generating Higgs mass)

• Meson spectrum with quenched fundamental and antisymmetric fermions arXiv:1912.06505 arXiv:1909.12662

(Ongoing)

arXiv:2202.05516 & 2306.11649

(This work)

