

國立陽明交通大學

NATIONAL YANG MING CHIAO TUNG UNIVERSITY Institute of Physics

Implication of X17 boson to D meson, Charmonium and ϕ meson decays

Speaker: Lam Thi Thuc Uyen

Collaborators: Guey-Lin Lin and Fei-Fan Lee

NYCU, 2024/06/04

2 X17 hypothesis (vector case) from anomalous ${}^{8}Be$, ${}^{4}He$, and ${}^{12}C$ decays

Outline

3 Strengths of X17 couplings to light and heavy quarks – determined by fittings to D meson, Charmonium and ϕ meson decays

X17 hypothesis (vector case) from anomalous ${}^{8}Be$, ${}^{4}He$, and ${}^{12}C$ decays

Outline

Strengths of X17 couplings to light and heavy quarks – determined by fittings to D meson, Charmonium and ϕ meson decays

What is X17 boson?

PRL 116, 042501 (2016)

PHYSICAL REVIEW LETTERS

week ending 29 JANUARY 2016

Observation of Anomalous Internal Pair Creation in ⁸Be: A Possible Indication of a Light, Neutral Boson

A. J. Krasznahorkay,^{*} M. Csatlós, L. Csige, Z. Gácsi, J. Gulyás, M. Hunyadi, I. Kuti, B. M. Nyakó, L. Stuhl, J. Timár, T. G. Tornyi, and Zs. Vajta Institute for Nuclear Research, Hungarian Academy of Sciences (MTA Atomki), P.O. Box 51, H-4001 Debrecen, Hungary

T. J. Ketel

Nikhef National Institute for Subatomic Physics, Science Park 105, 1098 XG Amsterdam, Netherlands

A. Krasznahorkay

CERN, CH-1211 Geneva 23, Switzerland and Institute for Nuclear Research, Hungarian Academy of Sciences (MTA Atomki), P.O. Box 51, H-4001 Debrecen, Hungary (Received 7 April 2015; published 26 January 2016)

Electron-positron angular correlations were measured for the isovector magnetic dipole 17.6 MeV $(J^{\pi} = 1^+, T = 1)$ state \rightarrow ground state $(J^{\pi} = 0^+, T = 0)$ and the isoscalar magnetic dipole 18.15 MeV $(J^{\pi} = 1^+, T = 0)$ state \rightarrow ground state transitions in ⁸Be. Significant enhancement relative to the internal pair creation was observed at large angles in the angular correlation for the isoscalar transition with a confidence level of $> 5\sigma$. This observation could possibly be due to nuclear reaction interference effects or might indicate that, in an intermediate step, a neutral isoscalar particle with a mass of $16.70 \pm 0.35(\text{stat}) \pm 0.5(\text{syst}) \text{ MeV}/c^2$ and $J^{\pi} = 1^+$ was created.

~400 citations, ${}^{8}Be$ anomaly, X17 boson

The Atomki experiment [Quanta Magazine]

The Atomki experiment

FIG. 1.1. The proton beam collides the target lithium nuclear to produce the ${}^{8}Be^{*}$ state, which subsequently decays into the ${}^{8}Be$ ground state. This further breaks down into an electron-positron pair whose opening angle and invariant mass are measured.

The Atomki experiment

FIG. 1.1. The proton beam collides the target lithium nuclear to produce the ${}^{8}Be^{*}$ state, which subsequently decays into the ${}^{8}Be$ ground state. This further breaks down into an electron-positron pair whose opening angle and invariant mass are measured.

Standard Model Internal Pair Creation Correlation (IPCC), where the nuclear emits a virtual photon which then decays to an e^+e^- pair. Hadronic decay ($BR \sim 1$) $^{8}Be^{*} \rightarrow ^{7}Li + p$ Electromagnetic decay ($BR \sim 1.5 \times 10^{-5}$) ${}^{8}Be^{*} \rightarrow {}^{8}Be + \gamma$ Internal pair creation ($BR \sim 5.5 \times 10^{-8}$) ${}^{8}Be^{*} \rightarrow {}^{8}Be + \gamma^{*} \rightarrow {}^{8}Be + e^{+}e^{-}$

M. E. Rose, Phys. Rev. 76 (1949).
P. Schlüter, G. Soff, and W. Greiner, Physics Reports 75 no. 6, (1981).
D. R. Tilley *et al.*, Nucl. Phys. A745 (2004).

$$\frac{BR({}^{8}Be^{*} \to X + {}^{8}Be)}{BR({}^{8}Be^{*} \to \gamma + {}^{8}Be)} \times BR(X \to e^{+}e^{-}) = (6 \pm 1) \times 10^{-6}$$

IOP, NYCU 2024/01/25

TPS 2024 Annual Meeting

Page 8

A. J. Krasznahorkay *et al.* [Atomki] (Oct 2019)

A. J. Krasznahorkay et al. [Atomki] (Nov 2022)

~ 100 citations, ${}^{4}He$ anomaly, X17 boson

$$p + {}^{3}H \rightarrow {}^{4}He^{*} \rightarrow {}^{4}He_{0} + e^{+}e^{-}$$

Events / (3 degrees) 550 $^{11}B(p, e^+e^-)^{12}C$ $E_p = 1.88 \text{ MeV}$ 500 450 400 350 300 10.00000000000000 90 100 110 120 130 140 150 160 170 Θ (degrees)

> 30 citations, ¹²C anomaly, X17 boson

 $p + {}^{11}B \rightarrow {}^{12}C^* \rightarrow {}^{12}C_0 + e^+e^-$

The decay: $H^* \rightarrow He^+e^-$ here, H^* is vector mesons with spin-parity 1⁻

Π is pseudosculul mesons with spin-pully	Η	' is	pseudoscald	ar mesons	with s	spin–	parity	0 /) —
--	---	------	-------------	-----------	--------	-------	--------	-----	-----

Meson name	H *	Н	Quark content
	D*0 -	→ D ⁰	$car{u}$
D mesons	D^{*+} -	→ D ⁺	$car{d}$
	D_{S}^{*+} –	$\rightarrow D_s^+$	cs
Charmonium	$\psi(2S)$ -	• $\eta_c(1S)$	$c\bar{c}$
$oldsymbol{\phi}$ meson	φ(1020) –	→ η	$\phi(sar{s})$ and $\eta\left(rac{uar{u}+dar{d}-2sar{s}}{\sqrt{6}} ight)$

The decay: $H^* \rightarrow He^+e^-$ here, H^* is vector mesons with spin-parity 1^-

H is pseudoscalar mesons with spin-parity 0^-

Meson name	H *	Н	Quark content
	D*0 -	→ D ⁰	$car{u}$
D mesons	D^{*+} -	→ D ⁺	$car{d}$
	D_{s}^{*+} –	$\rightarrow D_s^+$	cs
Charmonium	$\psi(2S)$ -	• $\eta_c(1S)$	cē
$oldsymbol{\phi}$ meson	φ(1020) –	→ η	$\phi(sar{s})$ and $\eta\left(rac{uar{u}+dar{d}-2sar{s}}{\sqrt{6}} ight)$

FIG.1.1: Feynman diagram for photon intermediate

FIG.1.2: Feynman diagram for X boson intermediate

2 X17 hypothesis (vector case) from anomalous ⁸Be, ⁴He, and ¹²C decays 3 Strengths of X17 couplings to light and heavy quarks – determined by

fittings to D meson, Charmonium and ϕ meson decays

Outline

$$R_{ee}^{V=\gamma,X} = \frac{\Gamma^{V}(H^* \to He^+e^-)}{\Gamma(H^* \to H\gamma)}$$

IOP, NYCU 2024/01/25

TPS 2024 Annual Meeting

• VMD is based on the assumption of ideal mixing for vector mesons resonances : $\rho^0\left(\frac{u\overline{u}-d\overline{d}}{\sqrt{2}}\right)$, $\omega\left(\frac{u\overline{u}+d\overline{d}}{\sqrt{2}}\right)$, $\phi(s\overline{s})$

•
$$F_{D^*D\gamma}(q^2) = \sqrt{\frac{m_{D^*}}{m_D}} \left[\frac{e_Q}{m_{D^*}} + \frac{e_q}{m_q(q^2)} \right]$$
 and $F_{D^*DX}(q^2) = \sqrt{\frac{m_{D^*}}{m_D}} \left[\frac{\varepsilon_Q}{m_{D^*}} + \frac{\varepsilon_q}{m_q(q^2)} \right]$ with $m_q(q^2) = -\sum_{\mathcal{V}} \left(2\sqrt{2}g_{\mathcal{V}}\lambda \frac{f_{\mathcal{V}}}{m_{\mathcal{V}}^2} \right) \left(1 - \frac{q^2}{m_{\mathcal{V}}^2} \right).$

G.L.Castro, N.Quintero, Phys. Rev. D 093002 (2021)

 \succ Charmonium decay: $ψ(2S)(c\bar{c}) → η_c e^+ e^-$

$$R_{\psi'\eta_c X}(q^2) = \frac{F_{\psi'\eta_c X}(q^2)}{F_{\psi'\eta_c \gamma}(0)} = \varepsilon_c \times \frac{F_{\psi'\eta_c \gamma}(q^2)}{F_{\psi'\eta_c \gamma}(0)} = \frac{\varepsilon_c}{1 - q^2/\Lambda_{\psi'\eta_c}^2}$$

- ⇒ The VMD is used to explain the TFF $\mathcal{R}_{\psi'\eta_c\gamma}(q^2)$, where the virtual photon effectively couples to vector mesons.
- ⇒ The pole mass $\Lambda_{\psi'\eta_c}$ should be the mass of the vector resonances near the energy scale of the decaying particle.

$$\Lambda_{\psi'\eta_c} = m_{\psi(3770)} = 3773.7 \pm 0.4 \; {
m MeV}/c^2$$

▶
$$\phi$$
 meson decay: $\phi(s\bar{s}) \rightarrow e^+ e^- \eta \left(\frac{u\bar{u} + d\bar{d} - 2s\bar{s}}{\sqrt{6}} \right)$

$$\mathcal{R}_{\phi\eta\chi}(q^2) = \frac{F_{\phi\eta\chi}(q^2)}{F_{\phi\eta\gamma}(0)} = \frac{2}{\sqrt{6}} \varepsilon_s \times \frac{F_{\phi\eta\gamma}(q^2)}{F_{\phi\eta\gamma}(0)} = \frac{2}{\sqrt{6}} \frac{\varepsilon_s}{1 - q^2/\Lambda_{\phi\eta\gamma}^2}$$

with
$$\Lambda_{\phi\eta} = m_{\phi(1680)} =$$
 1680 \pm 20 MeV/ c^2

PDG (Prog. Theor. Exp. Phys. 2022, 083C01 (2022) and 2023 update)

IOP, NYCU 2024/01/25

TPS 2024 Annual Meeting

Page 18

X17 hypothesis (vector case) from anomalous ^{8}Be , ^{4}He , and ^{12}C decays

Outline

3 Strengths of X17 couplings to light and heavy quarks – determined by fittings to D meson, Charmonium and ϕ meson decays

4 Conclusion

- The photon mediated contribution is in good agreement with $R_{exp} = (7.2^{+1.8}_{-1.6}) \times 10^{-3}$.
- The reults from "VMD_2023" still somewhat consistent with the data in the decays $D_s^{*+} \rightarrow D_s^+ e^+ e^-$.
- R_{ee} in label "VMD_2016" is completely inconsistent with the data R_{exp} .

TPS 2024 Annual Meeting

D. Cronin-Hennessy, et al. [CLEO Collaboration] (2011)

 $R_{ee} = R_{ee}^X + R_{ee}^{\gamma}$

TABLE III. Photon and X17 boson exchange contributions to the ratio of decay rates defined in Eq. (10). We assume universal couplings of the hypothetical X17 boson to down-type quarks [$\varepsilon_b = \varepsilon_s = \varepsilon_d = \mp 7.4 \times 10^{-3}$] and up-type quarks [$\varepsilon_c = \varepsilon_u = \pm 3.7 \times 10^{-3}$] (see end of Sec. II). Unless explicitly indicated, theoretical uncertainties are at least 3 orders of magnitude smaller than the corresponding central values.

Channel	$R^{\gamma}_{ee}(H^*)$	$R^X_{ee}(H^*)$	Total	Experiment
$D^{*+} \rightarrow D^+ e^+ e^-$ $D^{*0} \rightarrow D^0 e^+ e^-$ $D^{*+}_s \rightarrow D^+_s e^+ e^-$	$6.67 \times 10^{-3} \checkmark 6.67 \times 10^{-3} \checkmark 6.72 \times 10^{-3} \checkmark$	$(1.05 \pm 0.07) \times 10^{-3} \checkmark$ $3.02 \times 10^{-5} \checkmark$ $(3.10 \pm 0.60) \times 10^{-3}$ $(2.62 \pm 1.3) \times 10^{-2}$	$(7.72 \pm 0.07) \times 10^{-3} \checkmark (9.82 \pm 0.60) \times 10^{-3} \checkmark (3.3 \pm 1.3) \times 10^{-2}$	$(7.2^{+1.8}_{-1.6}) \times 10^{-3}$ [26]
		The red numbers recalcule	D. Cronin-Hennessy, et al. [CLE	
IOP, NYCU 2024/01/25		TPS 2024 Annual Meeting		Page 21

Collaboration] (2011)

M. Ablikim, et al. [BESIII Collaboration] (2021)

IOP, NYCU 2024/01/25

TPS 2024 Annual Meeting

 $R_{ee} = R_{ee}^X + R_{ee}^{\gamma}$

Fig. 3.3. $(\varepsilon_c, \varepsilon_s)$ and $(\varepsilon_c, \varepsilon_u)$ are extracted from the data of D meson, Charmonium and ϕ meson decays.

FIG. 3.4. χ^2 method for three parameters ε_c , ε_s and ε_u estimated at 1σ using four measurements from D meson, Charmonium and ϕ meson decays.

 $\chi^{2} = \sum_{i=1}^{4} \frac{\left(R_{i}^{th}(\varepsilon_{c}, \varepsilon_{s}, \varepsilon_{u}) - R_{i}^{ob}\right)^{2}}{\sigma_{i}^{2}} = 0.016, \quad |\varepsilon_{s}| = 0.0063, \quad \varepsilon_{c} \text{ and } \varepsilon_{s} \text{ have opposite signs.}$ • $|\varepsilon_{c}| = 0.016, \quad |\varepsilon_{s}| = 0.0063, \quad \varepsilon_{c} \text{ and } \varepsilon_{s} \text{ have opposite signs.}$ • For each pair of values $\varepsilon_{c}, \varepsilon_{s}$, we get two values $\varepsilon_{u} > 0$ and $\varepsilon_{u} < 0, \quad |\varepsilon_{u}| \propto 10^{-2}.$

X17 hypothesis (vector case) from anomalous ^{8}Be , ^{4}He , and ^{12}C decays

Outline

Strengths of X17 couplings to light and heavy quarks – determined by fittings to D meson, Charmonium and ϕ meson decays

Conclusion

- □ The effects of the X17 boson in interactions with D meson, Charmonium, and ϕ meson decays are analyzed using the Vector Meson Dominance model for calculating the transition form factors.
- □ To fit the data of $D^{*0} \rightarrow D^0 e^+ e^-$ by BESIII, we have to remove the assumptions of generation universality $|\varepsilon_u| = |\varepsilon_c|$ and $|\varepsilon_d| = |\varepsilon_s|$.
- □ Combined fittings to data from D meson, Charmonium, and ϕ meson decays opens up various possibilities regarding the magnitude and sign of ε_q and ε_Q . The best-fit values are $|\varepsilon_c| = 0.016$ and $|\varepsilon_s| = 0.0063$, while $|\varepsilon_u| = 0.052$ or 0.058. An ε_u with an absolute value about few times of 10^{-2} is not compatible with the data of anomalous ⁸Be, ⁴He, and ¹²C decays.