Phenomenology of compact objects from a first order phase transition in the dark sector

Jan Tris<u>tram</u> Acuña (安建宇)

Department of Physics, National Tsinghua University, Hsinchu

[JTA, Po-Yan Tseng (曾柏彦), JHEP 08 (2023) 117 JTA, Danny Marfatia, Po-Yan Tseng, arxiv:24xx.xxxx]

The Future is Flavourful 4th NCTS TG2.1 Future Workshop, NYCU Campus, Hsinchu, Taiwan ROC

06 June 2024

Outline

- Overview of phase transitions in cosmology
 - sGW production
 - Novel PBH formation mechanism: Fermi ball collapse from dark FOPT
- Pulsar timing
 - Doppler and Shapiro
 - Constraints: sGW and probe of compact objects
- Spin of PBH
- Conclusions

Phase transitions

Tram Acuña - NTHU

Phase transitions in cosmology

Separation Angle Between Pulsars [degrees]

Retrieved from: https://nanograv.org/15yr/Summary/Background

Retrieved from:

https://nanograv.org/news/nanograv-findspossible-first-hints-low-frequency-gravitationalwave-background-0

Phase transitions in cosmology

Retrieved from: arXiv:1705.01783

Phase transitions in cosmology

Retrieved from: https://cds.cern.ch/record/2729160/files/phases.png

Take-away: all PT in SM are crossovers, strong FOPT may generate huge signal to explain NANOGrav, need physics beyond SM (BSM)

Retrieved from: https://cds.cern.ch/record/471776/files/sm_simple.png

Outline

- Overview of phase transitions in cosmology
 - sGW production
 - Novel PBH formation mechanism: Fermi ball collapse from dark FOPT
- Pulsar timing
 - Constraints from Doppler and Shapiro
 - Constraints from sGW
- Spin of PBH
- Conclusions

Dark matter

Fermi ball and PBH DM^[2]

 $L = \frac{1}{2} (\partial \phi)^2 - V_{eff}(\phi, T)$ $+\overline{\chi}(i\gamma^{\mu}\partial_{\mu}-m_{\chi})\chi-g_{\chi}\phi\overline{\chi}\chi$

Dark sector [temp. = T(t)]

Visible sector [temp. = $T_{SM}(t)$]

Tram Acuña - NTHU

Panels (a)-(c) taken from: ^[2]Kawana, Kiyoharu, and Ke-Pan 9/31 Xie. (2022)

Fermi ball and PBH DM^[2]

 $Q_{FB} = \frac{\eta_{\chi} s_{\nu}(t_{*})}{f_{m}(t_{*})} A \frac{4 \pi R_{*}^{3}}{3} \quad \stackrel{\text{U(1)}}{\text{EV bubble}}$ $M_{FB} = Q_{FB} (12 \pi^2 \Delta V_{eff} (T_*))^{1/4}$

for FB collapse to

PBH

10/31

Panels (d)-(f) taken from: ^[2]Kawana, Kiyoharu, and Ke-Pan Xie. (2022)

Fermi ball and PBH DM^[2]

$$\begin{split} \langle M \rangle &\simeq \left(4.07 \times 10^{-8} M_{\odot} \right) \left(\frac{10.63}{g_*} \right)^{1/4} \left(\frac{0.1 \,\mathrm{MeV}}{T_*} \right)^2 \left(\frac{\xi}{0.1} \right)^2 \\ &\times \left(\frac{\eta_{\chi}}{10^{-7}} \right) \left(\frac{v_w}{1} \right)^3 \left(\frac{2.5 \times 10^2}{\beta/H_*} \right)^3 \left(\frac{\alpha_{tr}}{0.1} \right)^{1/4} \left[\frac{\mathcal{F}(T_*/T_c)}{0.308} \right]^{1/4} \\ \omega_{PBH,*} &\simeq 0.434 \left(\frac{\alpha_{tr}}{0.1} \right)^{1/4} \left(\frac{g_*}{10.63} \right)^{1/4} \left(\frac{T_*}{0.1 \,\mathrm{MeV}} \right) \\ &\left(\frac{0.1}{\xi} \right) \left(\frac{\eta_{\chi}}{10^{-7}} \right) \left[\frac{\mathcal{F}(T_*/T_c)}{0.308} \right]^{1/4} \\ F(x) &\equiv \frac{1-x}{1-3x/4} \end{split}$$

Outline

- Overview of phase transitions in cosmology
 - sGW production
 - Novel PBH formation mechanism: Fermi ball collapse from dark FOPT
- Pulsar timing
 - Constraints from Doppler and Shapiro
 - Constraints from sGW
- Spin of PBH
- Conclusions

Pulsar timing: Doppler & Shapiro

$$\left(\frac{\delta\nu}{\nu}\right)_D = \frac{1}{c}\hat{d}\cdot\int\vec{\nabla}\Phi \ dt$$

 $\left(\frac{\delta\nu}{\nu}\right)_S = -\frac{2}{c^3}\vec{v}\cdot\int\vec{\nabla}\Phi \ dz$

$$\delta \phi = \int^t dt \, ' \, \delta \, v(t \, ')$$

Pulsar timing: Detector properties

Retrieved from: https://www.cv.nrao.edu/~sransom/web/Ch6.html

$$\phi(t) = \phi_0 + \nu t + \frac{\dot{\nu}}{2}t^2 + \frac{\ddot{\nu}}{6}t^3 + \dots$$
$$SNR = \frac{|\ddot{\nu}/\nu|}{\sigma_{\bar{\nu}/\nu}} \quad (?)$$

PTA property	Value
No. of pulsars	200
RMS timing residual	50 ns
Cadence	2 weeks
Total observation time	20 years

$$t_{\nu/\nu} = 6 \sqrt{\frac{2800 \,\Delta t}{T}} \frac{t_{rms}}{T^3}$$
 ^[3]Uncertainty in
(~2.8 x 10⁻³³ Hz²) ^[3]Uncertainty V

Tram Acuña - NTHU ^[3]Liu, X. J., C. G. Bassa, and B. W. 14/31 Stappers. (2018)

 σ

Pulsar timing: monochromatic, pointlike PBHs

^[4]Dror, Jeff A., et al. (2019)

Pulsar timing: sensitivity limits^[5,6]

$$\delta \phi = \int^t dt \, ' \, \delta \, v(t \, ')$$

$$\text{SNR}_{I}^{2} = \frac{1}{\nu_{I}^{2} t_{rms}^{2} \Delta t} \int_{0}^{T_{obs}} dt \ h_{I}^{2}(t).$$

$$h_I(t) = \sum_{i=1}^N \delta \phi_{I,i}(t) - \delta \phi_{0,I}(t)$$

<u>Sensitivity criterion</u>: 90% of mock universes have max SNR > 4

^[5]Lee, Vincent SH, et al. (2021) ^[6]Ramani, Harikrishnan, Tanner Trickle, and Kathryn M. Zurek. (2020) (f,M) -> size of simulation volume

 $f\rho_{DM}/M \rightarrow \#$ density

Maxwell-Boltzmann -> velocity assignment

NB: We developed a parallelizable FORTRAN code to perform the simulation on a 72-core cluster

Outline

- Overview of phase transitions in cosmology
 - sGW production
 - Novel PBH formation mechanism: Fermi ball collapse from dark FOPT
- Pulsar timing
 - Constraints from Doppler and Shapiro
 - Constraints from sGW
- Spin of PBH
- Conclusions

Complementary signal: Stochastic GWs

- GW through sound waves, nonrunaway regime
- Assess sensitivity reach using some SNR
- Peak-integrated sensitivity curves (PISC)^[1] as a means to calculate SNR

$$\Omega_{s}(f)h^{2} = \Omega_{s}^{peak}h^{2} S_{s}(f, f_{s})$$
$$S_{s}(f, f_{s}) = \left(\frac{f}{f_{s}}\right)^{3} \left[\frac{7}{4+3(f/f_{s})^{2}}\right]^{7/2}$$
$$\equiv n_{det}\tau_{obs,GW} \int_{f_{min}}^{f_{max}} df \left[\frac{\Omega_{sig}(f)h^{2}}{\Omega_{noise}(f)h^{2}}\right]^{2}$$

$$\rho(f_s) = \frac{\Omega_{peak}h^2}{\Omega_{PIS}(f_s)h^2}$$
$$\left(\Omega_{PIS}h^2\right)^{-2}(f_s) \equiv n_{det}\tau_{obs,GW} \int_{f_{min}}^{f_{max}} df \left[\frac{\mathcal{S}(f,f_s)}{\Omega_{noise}(f)h^2}\right]^2$$

^[1]Schmitz, Kai. (2021)

Tram Acuña - NTHU

 ρ^2

<u>Sensitivity criterion</u>: sGW SNR > 1

$$\Omega_s^{peak} h^2 \simeq 2.65 \times 10^{-6} \left(\frac{v_w}{\beta/H_*}\right)$$
$$\left[\frac{100}{g_{*\rho,v}(T_*)}\right]^{1/3} \left(\frac{\kappa_s \alpha_{tr}}{1+\alpha_{tr}}\right)^2 \left(1+\frac{g_{*\rho,d}}{g_{*\rho,v}}\xi^4\right)$$
$$f_s \simeq 1.9 \times 10^{-2} \text{ mHz} \left[\frac{g_{*v}(T_*/\xi)}{100}\right]^{1/6}$$
$$\left(\frac{T_*}{100 \text{ GeV}}\right) \left(\frac{\beta/H_*}{v_w}\right) \left(1+\frac{g_{*\rho,d}}{g_{*\rho,v}}\xi^4\right)^{1/2} \frac{1}{\xi}$$

SKA is sensitive to ~1 keV (~0.1 keV) for $\eta_x = 10^{-5} (10^{-4})$

Plot from: JTA, Po-yen Tseng JHEP 08 (2023) 117

Outline

- Overview of phase transitions in cosmology
 - sGW production
 - Novel PBH formation mechanism: Fermi ball collapse from dark FOPT
- Pulsar timing
 - Constraints from Doppler and Shapiro
 - Constraints from sGW
- Spin of PBH
- Conclusions

Previous work on PBH spin

- Peebles 1969: galaxy rotation in MD
- Choptuik criticality (Choptuik '93; Baumgarte & Gundlach '16; Chiba & Yokoyama '17)
- 1st vs 2nd order approach (Gruzinov, Mirbabayi, Noreña '19; de Luca et al '19; Harada et al '21)
- Assume that PBHs are formed from the enhancement of primordial power spectrum

Taken from: De Luca, Valerio, et al. (2019)

Our approach

- Spin is induced by cosmological perturbations
- Gaussian scale invariant
- Assume spherical protoobject
- Cosmological perturbations could be modified by FOPT^[9]

$$\langle \mathcal{R}_k \mathcal{R}_{k'} \rangle = (2\pi)^3 P_{\mathcal{R}}(k) \delta^{(3)}(\vec{k} - \vec{k'}),$$

 $P_{\mathcal{R}}(\eta = 0, k) = \frac{2\pi^2}{k^3} A_s \left(\frac{k}{k_s}\right)^{n_s - 1}.$
 $A_s = (2.196 \pm 0.060) \times 10^{-9},$

$$\vec{J}_{F,CM} = \int \rho_F \ a\vec{x} \times \vec{v} \ \sqrt{g_3} d^3\vec{x} - \vec{R}_{CM} \times \vec{P}_{CM}$$

$$\vec{J}_{F,CM}(\eta) = 4\pi \bar{\rho}_F R^5 \int d\Pi_k d\Pi_{k'} (\vec{k} \times \vec{k'}) \delta_{eff}(\vec{k},\eta) \\ \times \left[\mathcal{F}(|\vec{k} + \vec{k'}|x_0) - 3\mathcal{F}(kx_0)\mathcal{G}(k'x_0) \right] \hat{\psi}_F(\vec{k'},\eta) / k'.$$

$$\vec{s} \equiv \frac{\vec{J}}{G_N M^2}.$$

^[9]Schmid, Christoph, Dominik J. Schwarz, and Peter Widerin. (1999)

Cosmological evolution

 $\frac{da}{dx} = ah$ **Primordial** $\frac{dy}{dx} = -hy\left\{1 - \frac{3FTB'(T)}{4\rho_{x+TV}} + \frac{1}{h}\frac{dF}{dx}\left[\frac{B(T) - TB'(T)}{4\rho_{x+TV}}\right]\right\}\left[1 - \frac{FT^2B''(T)}{4\rho_{x+TV}}\right]^{-1}$ $\mathcal{H} = rac{1}{\eta}, \quad 0 < \eta < \eta_c,$ $\frac{dg_1}{dx} = -8\pi a^3 \frac{\Gamma(T_c y)}{H_c^4} v_w^3$ **Critical point** $\frac{dg_{i+1}}{dx} = \frac{g_i}{a}, \quad 1 \le i \le 2$ Supercooling+latent heat release Background $\frac{dF}{dx} = g_3 \frac{F}{a}$ Percolation evolution $\frac{d\tilde{\eta}}{dx} = \frac{1}{a},$ (???)Fermi ball formation $\frac{\delta'_F}{\mathcal{H}} - \frac{k}{\mathcal{H}}\hat{\psi}_F + 3(1+w_F)A_k + 3(c_{s,F}^2 - w_F)\delta_F = 0,$ (???) $\frac{\hat{\psi}'_F}{24} + (1 - 3w_F)\hat{\psi}_F + c_{s,F}^2 \frac{k}{24}\delta_F + (1 + w_F)\frac{k}{24}A_k = 0.$ **PBH** collapse Perturbation

Tram Acuña - NTHU

evolution

Cosmological evolution

Tram Acuña - NTHU

Preliminary results

$$s_{rms,*} = 6\left(1 + \frac{\rho_{SM,*}}{\rho_{D,*}}\right)\frac{v_{eff,*}}{\tilde{x}_{0,*}^2},$$

$$v_{eff} = \frac{3}{4} A_s \tilde{x}_0(\eta) \mathcal{C}^{1/2}(\tilde{x}_0, x_0),$$

$$\begin{aligned} \mathcal{C}(\tilde{x}_0, x_0) &\equiv A_s^{-2} \int_0^\infty dz \ z \int_0^\infty dz' \ z' \\ &\times \int_{-1}^1 dx \ (1 - x^2) \ W^2(z, z'; \tilde{x}_0) \Delta_{\mathcal{R}}^2(k) \Delta_{\mathcal{R}}^2(k') \end{aligned}$$

Tram Acuña - NTHU

Preliminary results

Tram Acuña - NTHU

27/31

Preliminary results

Outline

- Overview of phase transitions in cosmology
 - sGW production
 - Novel PBH formation mechanism: Fermi ball collapse from dark FOPT
- Pulsar timing
 - Constraints from Doppler and Shapiro
 - Constraints from sGW
- Spin of PBH
- Conclusions

Conclusions

- FOPT in early Universe is a subject rich in phenomenology
- Interesting playground to probe fundamental physics and inspiration for exotic physics
- In focus: novel PBH formation mechanism
- Pulsar timing can probe this novel PBH formation scenario
- Sensitivity range: PBH mass of 10⁻⁸~10⁻⁴, GW frequency of nHz~ μ Hz
- Provided a first step in calculating spin of PBH from this novel formation mechanism

Acknowledgments

- NSTC grant # NSTC 111-2811-M-007-018-MY2
- NTHU IoA CICA cluster

Thank you for your attention! 感謝各位的聆聽!

Tram Acuña Email: jtacuna@gapp.nthu.edu.tw

Extra slides

Primordial black holes

- cf. BH from stellar collapse (~1-10 M_{sol})
- Can be formed at any mass^[1]
- Potential DM candidate
- Proposed formation mechanisms
 - Collapse of overdense regions from primordial fluctuations
 - Critical collapse and Choptuik scaling
 - PBH from FOPT
 - Softening of fluid EoS (QCD PT)
 - Bubble wall collisions during FOPT^[2]
 - Collapse of Fermi balls from filtered out DM during <u>dark</u> FOPT^[3]

^[1]Zeldovich Ya., and Novikov I. D. (1974)
 ^[2]Kodama, Hideo, Misao Sasaki, and Katsuhiko Sato. (1982)
 ^[3]Kawana, Kiyoharu, and Ke-Pan Xie. (2022)

$$\rho_{BH} = \frac{3}{8 \pi G_N} \frac{1}{R_s^2} \qquad \overline{\rho} = \frac{3}{8 \pi G_N} \frac{1}{(1/H)^2}$$

$$M_{H} = \frac{1}{2G_{N}H} = \frac{t}{G_{N}} \approx 10^{-18} M_{sol} \left(\frac{t}{10^{-23}s}\right)$$

$$T_{Hawking} = 8.62 \times 10^{-12} eV(\frac{M_{sol}}{M})$$

$$\tau = 10^{64} y (M/M_{sol})^3$$

Filtered out dark matter

Taken from: Dongjin Chway, Tae Hyun Jung, Chang Sub Shin, Phys. Rev. D 101, 095019 (2020)

- DM mass is dynamically generated from FOPT
- Key ingredient: mass difference >> T
- DM number density is Boltzmann suppressed like in WIMP freeze out

Pulsar timing: Doppler & Shapiro

$$\left(\frac{\delta\nu}{\nu}\right)_D = \frac{1}{c}\hat{d}\cdot\int\vec{\nabla}\Phi \ dt$$

Tram Acuña - NTHU

Microlensing

-multiple images are formed, but not resolved as separate
-change the magnification
-microlensing event is registered if magnification is >1.34

Number of expected microlensing events:

- N_*T_{obs} (rate per source star) (transit time)

-rate per source star $\sim 1/M$

Plots from: JTA, Po-yan Tseng JHEP 08 (2023) 117 38

⁽⁹⁾Dror, Jeff A., et al. "Pulsar timing probes of primordial black holes and subhalos." Physical Review D 100.2 (2019): 023003.

Pulsar timing: sensitivity limits^[6,7]

<u>Sensitivity criterion</u>: 90% of mock universes have max SNR > 4

Tram Acuña - NTHU

^[6]Lee, Vincent SH, et al. (2021) ^[7]Ramani, Harikrishnan, Tanner Trickle, and Kathryn M. Zurek. (2020)

Generic quartic potential

$$\begin{split} V_{eff}(\phi,T) &= D\left(T^2 - T_0^2\right)\phi^2 - (AT + C)\phi^3 + \frac{\lambda}{4}\phi^4 \\ &-B = -DT_0^2\phi_0^2 - C\phi_0^3 + \frac{\lambda}{4}\phi_0^4 \\ &0 = -2DT_0^2 - 3C\phi_0 + \lambda\phi_0^2, \end{split}$$
 Observables:

$$\{B^{1/4}, C, D, \lambda\} \longrightarrow \{\eta_{\chi}, T_*, \alpha_{tr}, T_c, \xi, \beta/H_*, v_w\}$$
Effective potential FOPT parameters

Ave. PBH mass
 -PBH fraction

 -Peak GW
 abundance
 -Peak GW
 frequency

^[12]Marfatia, Danny, and Po-Yan Tseng. "Correlated signals of first-order phase transitions and primordial black hole evaporation." Journal of High Energy Physics 2022.8 (2022): 1-14.

