Massive Neutrino Self-Interactions and the Hubble Tension

Shouvik Roy Choudhury Distinguished Postdoctoral Fellow ASIAA

Taipei, Taiwan

June 4, 2024

The Future is Flavourful Hsinchu, Taiwan

This Talk is based on ...

• Shouvik Roy Choudhury, Steen Hannestad (Aarhus U, Denmark), Thomas Tram (Aarhus U, Denmark), "Updated constraints on massive neutrino self-interactions from cosmology in light of the H₀ tension," arXiv: 2012.07519 (JCAP 03 (2021) 084).

Figure: Steen Hannestad (Aarhus U., Denmark) and Thomas Tram (Aarhus U. Denmark)

Introduction

• Einstein's field equations of classical General Relativity state that:

$$G_{\mu\nu} = 8\pi G T_{\mu\nu}.\tag{1}$$

• The universe is homogeneous and isotropic on large scales \rightarrow Friedmann-Lemaître-Robertson-Walker (FLRW) metric:

$$ds^{2} = dt^{2} - a^{2}(t) \left[\frac{dr^{2}}{1 - Kr^{2}} + r^{2}(d\theta^{2} + \sin^{2}\theta d\phi^{2}) \right],$$
 (2)

• Assuming $T_{\mu\nu} = \operatorname{diag}(\rho, P, P, P)$ (corresponding to a perfect fluid with energy density ρ and pressure P) \rightarrow Friedmann equations:

$$H(a)^2 \equiv \frac{\dot{a}}{a} = \frac{8\pi G}{3}\rho(a) - \frac{K}{a^2}$$
 (3)

$$\frac{\ddot{a}}{a} = -\frac{4\pi G}{3}(\rho + 3P),\tag{4}$$

with the dot denoting a time derivative.

Introduction

• The contribution to the energy density $\rho(a)$ comes from various sources: photons (γ) , massive neutrinos (ν) , baryons(b), dark matter (c), dark energy (DE). Introducing the redshift as z = 1/a - 1, we can write,

$$\rho(z) = \rho_{\gamma}(z) + \rho_{c}(z) + \rho_{b}(z) + \rho_{\text{DE}}(z) + \rho_{\nu}(z).$$
 (5)

• The Equation of State (EoS) w_i of a particular component of the universe (except curvature) is defined as $P_i = w_i \rho_i$.

$$\rho_i(z) \propto (1+z)^{3(1+w_i)}.$$
(6)

• In general, we use the subscript 0 to denote quantities evaluated at the present time.

$$\Omega_i = \frac{\rho_{i,0}}{\rho_{cr,0}}, \qquad \rho_{cr,0} = \frac{3H_0^2}{8\pi G}.$$
(7)

for $i \equiv \gamma, \nu, b, c$, DE. We also define $\Omega_{\rm k} = -K/H_0^2$.

Introduction

- Since photons always behave as radiation, $w_{\gamma} = 1/3$, whereas for CDM and baryons behave as matter for most of the evolution of the universe and thus one can take $w_c = w_b = 0$.
- For DE, we for now allow for an arbitrary but constant EoS, i.e. $w_{DE} = w$. If dark energy is described by a cosmological constant, Λ , then w = -1, and in that case we shall denote Ω_{DE} as Ω_{Λ} .

$$H(z)^{2} = H_{0}^{2} \left[\Omega_{\gamma} (1+z)^{4} + (\Omega_{c} + \Omega_{b}) (1+z)^{3} + \Omega_{\text{DE}} (1+z)^{3(1+w)} + \Omega_{k} (1+z)^{2} + \frac{\rho_{\nu}(z)}{\rho_{\text{cr},0}} \right].$$
(8)

Introduction: Very Brief Thermal History

- Neutrino Decoupling: $T \sim 1 \text{ MeV } (t \sim 1 \text{s})$. Weak interaction rate becomes less than universal expansion rate.
- Electron-positron annihilation: $T \sim 0.5$ MeV. Slightly heats up the neutrinos which haven't fully decoupled. Mostly heats up the photons.
- Big Bang Nucleosynthesis: $T \sim 100 \text{ keV (t} \sim 10 \text{s}).$
- Matter-radiation equality: $T \sim 0.75 \text{ eV (t} \sim 47000 \text{ yrs)}$.
- Recombination: $T \sim 0.3 \text{ eV} \text{ (t} \sim 380000 \text{ yrs)}.$
- Photon decoupling: $T \sim 0.26 \text{ eV}$.
- Drag epoch: Baryons are dragged along with photons. Continues up to $T \sim 0.20$ eV.
- Reionization: Ends the dark ages. When the first stars form, the ensuing UV radiation reionizes neutral Hydrogen in the intergalactic medium. $T \sim 5$ meV (t ~ 200 Myr 1 Gyr).
- Matter-Dark energy equality: $T \sim 0.75 \text{ meV} \text{ (t} \sim 9.8 \text{ Gyr)}.$
- Today: $T \sim 0.24 \text{ meV (t} \sim 13.8 \text{ Gyr)}$.

Neutrinos in Cosmology

• Active neutrinos have three mass eigenstates (ν_1 , ν_2 , and ν_3) which are quantum superpositions of the 3 flavour eigenstates (ν_e , ν_μ , and ν_τ). The sum of the mass of the neutrino mass eigenstates, is the quantity,

$$\sum m_{\nu} \equiv m_1 + m_2 + m_3,\tag{9}$$

where m_i is the mass of the i^{th} neutrino mass eigenstate.

- Tightest bounds on $\sum m_{\nu}$ come from cosmology.
- We use the approximation, $m_i = \sum m_{\nu}/3$ for all i.
- The radiation density in the early universe can be written as,

$$\rho_r = \left[1 + \frac{7}{8} \left(\frac{4}{11} \right)^{4/3} N_{\text{eff}} \right] \rho_\gamma \tag{10}$$

 $N_{\rm eff}$ is the effective number of relativistic degrees of freedom.

◆□▶ ◆□▶ ◆■▶ ◆■ ◆9<</p>

The ΛCDM parametrization

• The Λ CDM model parametrization is given by:

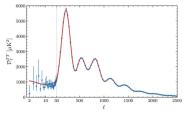
$$\theta = \{\Omega_{\rm c}h^2, \Omega_{\rm b}h^2, 100\theta_{MC}, \tau, \ln(10^{10}A_s), n_s\}. \tag{11}$$

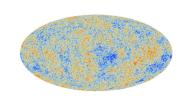
- $\omega_c \equiv \Omega_c h^2$ and $\omega_b \equiv \Omega_b h^2$ are the present-day physical CDM and baryon densities respectively.
- θ_{MC} is the parameter for angular size of the sound horizon, i.e. ratio between the sound horizon r_s^* and the angular diameter distance D_A^* at photon decoupling.
- τ is the optical depth to reionization. $\tau = \int_0^{z_{re}} n_e \sigma_T dl$ where n_e is free electron number density, σ_T is the Thomson scattering cross-section.
- n_s and A_s are the power-law spectral index and amplitude of the primordial scalar perturbations, respectively, at the pivot scale of $k_* = 0.05$ h Mpc⁻¹, i.e. the primordial power spectrum $P(k) = A_s (k/k_*)^{n_s-1}$.

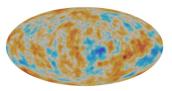
◆□ ▶ ◆□ ▶ ◆■ ▶ ● ◆○○

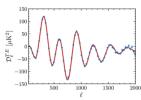
CMB Power Spectra

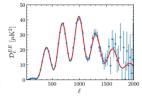
- $\Delta T/T \sim 10^{-5}$
- angular scale, $\theta \sim 180^{\circ}/l$











Credit: Planck Collaboration

4 D > 4 D > 4 E > 4 E > E 9 Q O

The sound horizon at last scattering

• The comoving sound horizon at the CMB last scattering is

$$r_s^* = \int_{z_*}^{\infty} \frac{c_s(z)dz}{H(z)} \tag{12}$$

- r_s^{drag} is the comoving sound horizon at the end of drag epoch, which is slightly higher than r_s^* (around 2%).
- The angular diameter distance to the last scattering surface is

$$D_A^* = \int_0^{z_*} \frac{dz}{H(z)}$$
 (13)

- $\theta_{MC} = r_s^*/D_A^* \simeq \pi/\Delta l$, where Δl is the peak spacing in CMB temperature power spectrum.
- Remember, in Λ CDM (+massive neutrinos):

$$H(z)^{2} = \left[\omega_{\gamma}(1+z)^{4} + (\omega_{c} + \omega_{b})(1+z)^{3} + \omega_{\Lambda} + \frac{\rho_{\nu}(z)}{\rho_{\text{cr},0}}\right]. \quad (14)$$

The Hubble Tension

- Value from Planck 2018 in Λ CDM : $H_0 = 67.36 \pm 0.54$ km/s/Mpc
- \bullet Value from Cepheid calibrated type Ia Supernovae in the local universe: $H_0{=}73.04\pm1.04$ km/s/Mpc (SH0ES 2022)
- **9** BAO measures $r_s^{\text{drag}}H_0$, uncalibrated SNeIa measure H_0d_L , where d_L is the luminosity distance.

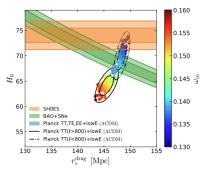
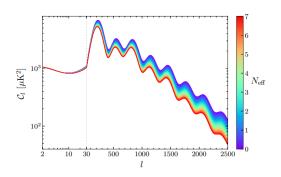


Figure: Depiction of the H0 tension - Lloyd Knox, Marius Millea, arXiv: 1908.03663 (Phys. Rev. D)

Effect of $N_{ m eff}$ on CMB temperature spectrum



- Extra radiation species cause a suppression of the CMB Temperature spectra and also cause a phase-shift of the peaks towards the left.
- E-mode polarisation spectrum is more sensitive than Temperature because of change in Thomson scattering rate close to recombination.

Extra light relics in the early universe

- $100\theta_{MC} = 1.04109 \pm 0.00030$ (68%, Planck 18 TT,TE,EE+lowE). This is a measurement with 0.03%. θ_{MC} (alternatively denoted θ_s^*) is the most well-constrained parameter in all of cosmology.
- Theoretical value of $N_{\rm eff}^{SM}=3.0440\pm0.00024$ assuming standard model of particle physics.
- Extra $\Delta N_{\rm eff} \simeq 1$ can increase H(z) in the early universe, which will decrease r_s^* enough to solve the Hubble tension.
- But in Λ CDM+ N_{eff} model: $N_{\text{eff}} = 2.99^{+0.34}_{-0.33}$ (95%, Planck 2018 TT,TE,EE+lowE+lensing+BAO)
- Simple light relics are not enough to solve the 5σ Hubble tension.

Free-streaming Neutrinos

• Free-streaming neutrinos go ahead of the strongly coupled photons and baryons, and then pull them through gravitational attraction. This causes an increase in r_s^* .

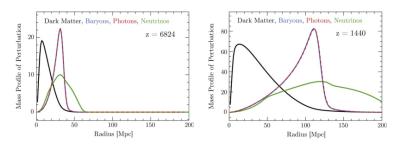
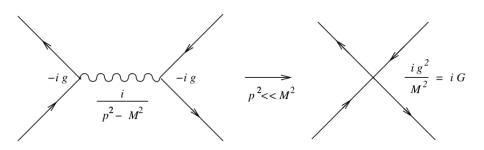


Image credit: D. J. Eisenstein et al., arXiv: astro-ph/0604361 (ApJ)

Neutrino Self-interactions mediated by a heavy scalar

- In this paper we have updated the constraints from cosmology on flavour universal neutrino self-interactions mediated by a heavy scalar ($m_{\phi} \geq 1$ keV), in the effective 4-fermion interaction limit (CMB temperature is far lower than the keV range).
- ullet Simplified universal interaction: ${\cal L}_{
 m int} \sim g_{ij} ar{
 u}_i
 u_j \Phi,$ with $g_{ij} = g \delta_{ij}$.
- The effective self-coupling, $G_{\text{eff}} = g^2/m_{\Phi}^2$, with $G_{\text{eff}} > G_F$ (Fermi constant), so that they remain interacting with each other even after decoupling from the photons at $T \sim 1 \text{ MeV}$.
- The self-interaction rate per particle $\Gamma = n \langle \sigma v \rangle \sim G_{\text{eff}}^2 T_{\nu}^5$, where $n \propto T_{\nu}^3$ is the number density of neutrinos. Neutrinos don't free-stream until $\Gamma < H$.
- Introducing this kind of interaction had shown potential in solving the Hubble tension in previous works in the very strong interaction range $(G_{\rm eff} \sim 10^9 G_F)$ using older data.

Feynman Diagram



 $M \equiv m_{\Phi}$

The Cosmological Model of interest

- Cosmological model: $\Lambda {
 m CDM} + {
 m log_{10}} \left[{
 m G_{eff}MeV^2} \right] + {
 m N_{eff}} + \sum m_{
 u}.$
- Christina D. Kreisch, Francis-Yan Cyr-Racine, Olivier Dore, Phys. Rev. D 101, 123505 (2020) (arXiv: 1902.00534) (Princeton-Harvard-Caltech collaboration) found the 68% bounds:

```
log_{10} \left[ G_{\rm eff} {
m MeV^2} \right] = -1.41^{+0.20}_{-0.066} (strong self-interactions),

H_0 = 71.1 \pm 2.2 \ {
m km/s/Mpc},

N_{\rm eff} = 3.80 \pm 0.45,

\sum m_{\nu} = 0.39^{+0.16}_{-0.20} \ {
m eV}

with Planck 2015 low-l and high-l TT+lensing combined with BAO, with similar goodness of fit to the data as ΛCDM.
```

- In this model, N_{eff} and H_0 are positively correlated \rightarrow Solution to the Hubble tension came from high $N_{\text{eff}} \simeq 4$ values.
- Planck polarization data was not used for main conclusions.

The Cosmological Model of Interest

Image Credit: Kreisch et. al., Phys. Rev. D 101, 123505 (2020), arXiv: 1902.00534

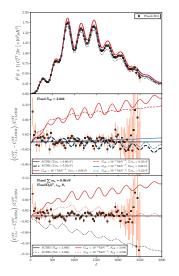


Figure: Degeneracy of of G_{eff} with N_{eff} and $\sum m_{\nu}$ in the CMB TT spectrum.

The Cosmological Model of interest

- With the public release of the Planck 2018 likelihoods, we thought it is timely to test the model again.
- We made runs which incorporated the full prior range of $\log_{10} \left[G_{\text{eff}} \text{MeV}^2 \right]$, i.e. $-5.5 \rightarrow -0.1$.
- We also run the non-interacting case $(NI\nu: G_{eff} = 0)$, the moderately interacting case $MI\nu$ $(\log_{10} \left[G_{eff}MeV^2\right] \lesssim -2)$, and the strongly interacting case $(SI\nu)$ $(\log_{10} \left[G_{eff}MeV^2\right] \gtrsim -2)$ separately.
- We sample the parameter space using the nested sampling technique. We use the publicly available **PolyChord** extension of **CosmoMC**, called **CosmoChord**.
- Use of the nested-sampling package PolyChord enables us to calculate evidences accurately, and properly sample this parameter space of bimodal posterior distributions.
- We modify the **CAMB** code to incorporate the neutrino self-interactions in the perturbation equations.

Collisional Boltzmann Equations

The perturbed metric in the Synchronous gauge:

$$ds^{2} = a^{2}(\tau) \{ -d\tau^{2} + (\delta_{ij} + h_{ij}) dx^{i} dx^{j} \}.$$
 (15)

The scalar mode of h_{ij} can be Fourier expanded as:

$$h_{ij}(\vec{x},\tau) = \int d^3k e^{i\vec{k}\cdot\vec{x}} \left\{ \hat{k}_i \hat{k}_j h(\vec{k},\tau) + (\hat{k}_i \hat{k}_j - \frac{1}{3}\delta_{ij}) 6\eta(\vec{k},\tau) \right\}, \quad \vec{k} = k\hat{k}.$$
(16)

Here h and η are the metric perturbations, defined from the perturbed space-time metric in synchronous gauge.

The Boltzmann equation can generically be written as

$$L[f] = \frac{Df}{D\tau} = C[f], \tag{17}$$

where L[f] is the Liouville operator. The collision operator on the right-hand side describes any possible collisional interactions.

Collisional Boltzmann Equations

One can then write the distribution function as

$$f(x^{i}, q, n_{j}, \tau) = f_{0}(q)[1 + \Psi(x^{i}, q, n_{j}, \tau)],$$
(18)

where $f_0(q)$ is the unperturbed distribution function.

In synchronous gauge the Boltzmann equation can be written as an evolution equation for Ψ in k-space

$$\frac{1}{f_0}L[f] = \frac{\partial \Psi}{\partial \tau} + i\frac{q}{\epsilon}\mu\Psi + \frac{d\ln f_0}{d\ln q}\left[\dot{\eta} - \frac{\dot{h} + 6\dot{\eta}}{2}\mu^2\right] = \frac{1}{f_0}C[f],\tag{19}$$

where $\mu \equiv n^j \hat{k}_j$ and $\epsilon = (q^2 + a^2 m^2)^{1/2}$.

Collisional Boltzmann Equations

The perturbation is then expanded as

$$\Psi = \sum_{l=0}^{\infty} (-i)^l (2l+1) \Psi_l P_l(\mu). \tag{20}$$

$$\dot{\Psi}_{0} = -\frac{qk}{\epsilon} \Psi_{1} + \frac{1}{6} \dot{h} \frac{d \ln f_{0}}{d \ln q} ,$$

$$\dot{\Psi}_{1} = \frac{qk}{3\epsilon} (\Psi_{0} - 2\Psi_{2}) ,$$

$$\dot{\Psi}_{2} = \frac{qk}{5\epsilon} (2\Psi_{1} - 3\Psi_{3}) - \left(\frac{1}{15} \dot{h} + \frac{2}{5} \dot{\eta}\right) \frac{d \ln f_{0}}{d \ln q} + \alpha_{2} \dot{\tau}_{\nu} \Psi_{2} , \quad (21)$$

$$\dot{\Psi}_{l} = \frac{qk}{(2l+1)\epsilon} [l\Psi_{l-1} - (l+1)\Psi_{l+1}] + \alpha_{\ell} \dot{\tau}_{\nu} \Psi_{l} , \quad l \geq 3 .$$

where $\dot{\tau}_{\nu} \equiv -aG_{\rm eff}^2 T_{\nu}^5$ is the neutrino self-interaction opacity, and α_l (l>1) are model dependent coefficients of order unity.

Plots from runs with full prior range of $log_{10}[G_{eff}MeV^2]$

Main conclusions follow from the TTTEEE+lowE+EXT dataset (blue curve).

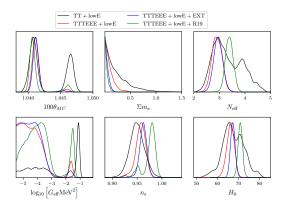


Figure: Here TTTEEE+lowE denotes the full Planck 2018 temperature and polarisation data. EXT denotes Planck 2018 lensing + BAO + RSD + SNeIa. R19 is the Gaussian prior of $H_0 = 74.03 \pm 1.42$ km/s/Mpc.

Roy Choudhury et al, arXiv 2012.07519 (JCAP 03 (2021) 084)

Mode separation: $MI\nu$ and $SI\nu$ plots shown separately

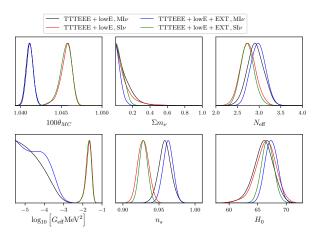


Figure: Here TTTEEE+lowE denotes the full Planck 2018 temperature and polarisation data. EXT denotes Planck 2018 lensing + BAO + RSD + SNeIa. R19 is the Gaussian prior of $H_0 = 74.03 \pm 1.42$ km/s/Mpc.

Roy Choudhury et al, arXiv 2012.07519 (JCAP 03 (2021) 084)

Mode separation: $MI\nu$ and $SI\nu$ plots shown separately

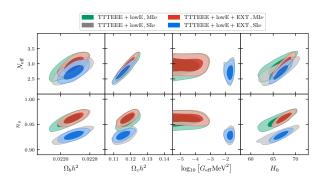


Figure: Here TTTEEE+lowE denotes the full Planck 2018 temperature and polarisation data. EXT denotes Planck 2018 lensing + BAO + RSD + SNeIa. R19 is the Gaussian prior of $H_0 = 74.03 \pm 1.42$ km/s/Mpc.

Roy Choudhury et al, arXiv 2012.07519 (JCAP 03 (2021) 084)

Discussion

- $\log_{10} \left[G_{\text{eff}} \text{MeV}^2 \right]$ is degenerate with θ_{MC} and n_s . This allows for a bimodal posterior distribution, even with the latest full Planck data.
- With TTTEEE+lowE+EXT we found the following 95% bounds, for the $SI\nu$

$$H_0 = 66.7^{+2.2}_{-2.1} \ \mathrm{km/s/Mpc}$$

 $N_{\mathrm{eff}} = 2.73^{+0.34}_{-0.31}$
 $\sum m_{
u} < 0.15 \ \mathrm{eV}.$

- Even if one were to re-analyze the data with a fixed $N_{\rm eff}=3.044$ with massive neutrinos and strong interactions, one would very likely get H_0 values in the ballpark of $69-70~{\rm km/s/Mpc}$ (as can be seen from the plots above), which does not work as a solution to the Hubble tension, albeit reducing the tension slightly compared to vanilla $\Lambda{\rm CDM}$.
- For the Non-interacting case (NI ν : Λ CDM + N_{eff} + \sum m $_{\nu}$), we find $H_0 = 67.3 \pm 2.2$ km/s/Mpc (95%) \rightarrow The strongly interacting model doesn't work better than this simple extension to Λ CDM.

EXT ≡ Planck 2018 lensing + BAO + RSD + SNeIa

Discussion

- Furthermore, Neutrino self-interactions are also strongly constrained from particle physics experiments, with the exception of flavour specific interaction among the τ -neutrinos.
- We find, $-2 \left[\log \left(\mathcal{L}_{\mathrm{SI}\nu} / \mathcal{L}_{\mathrm{NI}\nu} \right) \right] = 3.4 \text{ (approx. } \Delta \chi^2 \text{), and}$ $Z_{\rm SI\nu}/Z_{\rm NI\nu} = 0.06$ (evidence ratio), with TTTEEE+lowE+EXT.
- Bayesian evidences and log likelihood values both disfavour very strong self-interactions compared to $\Lambda \text{CDM} + N_{\text{eff}} + \sum m_{\nu}$, i.e. the non-interacting scenario $NI\nu$.
- To conclude, with current data, the strong neutrino self-interaction model does not look like a promising solution to the current H_0 discrepancy.

Particle Physics Constraints

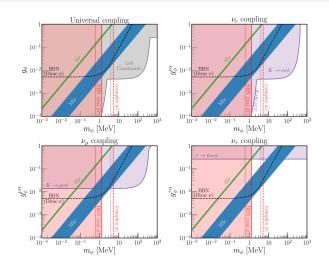


Figure: Constraints from particle physics

THE END

Thanks for listeninng! Questions are welcome!

Introduction: Bayesian Statistics

- Bayes' Theorem: P(B)P(A|B) = P(B|A)P(A), where A and B are different events.
- Notations: $D \equiv \text{data}, \ \theta \equiv \{\theta_1, \theta_2, ... \theta_n\} \equiv \text{parameters}, \ M \equiv \text{model}.$
- For a particular model M,

$$P(\theta|D, M)P(D|M) = P(D|\theta, M)P(\theta|M)$$
 (22)

- Posterior \times Evidence = Likelihood \times Prior.
- Normalization: $\int P(\theta|D, M)d\theta = 1$.
- Evidence:

$$Z_M \equiv P(D|M) = \int P(D|\theta, M)P(\theta|M)d\theta.$$
 (23)

Introduction: Bayesian Statistics

- In cosmological parameter estimation, we are usually interested in the posterior probability distribution, $\mathcal{P}_M(\theta) \equiv P(\theta|D,M)$, given the likelihood $\mathcal{L}_M(\theta) \equiv P(D|\theta,M)$, and priors $\pi_M(\theta) \equiv P(\theta|M)$.
- If we are interested in Bayesian model comparison, **Evidence is** the most important quantity.
- Let us apply Bayes' theorem again,

$$P(M|D)P(D) = P(D|M)P(M) \equiv Z_M P(M)$$
 (24)

• If we have two models M_1 and M_2 ,

$$\frac{P(M_1|D)}{P(M_2|D)} = \frac{P(M_1)}{P(M_2)} \frac{Z_{M_1}}{Z_{M_2}}$$
 (25)

• Typically, models are assigned the same prior preference, $P(M_1) = P(M_2)$.

Introduction: Bayesian Statistics

• Thus we have,

$$\frac{P(M_1|D)}{P(M_2|D)} = \frac{Z_{M_1}}{Z_{M_2}} \equiv B,$$
(26)

where B is called the Bayes' factor.

• ln B $\simeq 0.77 (1\sigma)$, 3 (2σ) , 5.9 (3σ) , 9.7 (4σ) , 14.37 (5σ) .