Lattice chiral fermion without **Hermiticity**

Chen-Te Ma (GBU)

Xingyu Guo (SCNU); Hui Zhang (SCNU) Phys.Rev.D 110 (2024) 3, 034502; Phys.Rev.D 104 (2021) 9, 094505; Int.J.Mod.Phys.A 40 (2025) 23, 2530008

August 26, 2025

Nielsen-Ninomiya Theorem [Nielsen and Ninomiya 1981]

- prohibits a hermitian construction of d-dimensional fermion lattice action S_F :
 - 1. D(x) is exponentially local, which implies that the operator is bounded by $\sim \exp(-|x|/c)$, where $c \propto a$;
 - 2. $\bar{D}(p) = i\gamma_{\mu}p_{\mu} + \mathcal{O}(ap^2)$ for $p \ll \pi/a$;
 - 3. $\bar{D}(p)$ is invertible for $p \neq 0$ (no massless doublers);
 - 4. $\gamma_5 D + D \gamma_5 = 0$ (continuum chiral symmetry),

where D(x) is a Dirac matrix satisfying

$$S_F = a^d \sum_{\text{all lattice points}} \bar{\psi}(D+m)\psi,$$
 (1)

and the D(p) is a Dirac matrix on a momentum space

Naive Non-Hermitian Lattice Fermion

- use forward finite difference operator (breaks Hermiticity) $D(n_1, n_2)_{\alpha_1, \alpha_2} \equiv (\gamma_1)_{\alpha_1, \alpha_2} (\delta_{n_1+1, n_2} - \delta_{n_1, n_2})/a$ [Stamatescu, Wu 1993]
- non-physical poles do not provide additional degrees of freedom when taking the continuum limit
- preserves chiral symmetry without square-root operators
- quenched averaging over all directions imposes the hypercubic symmetry

Two Flavors

two fermion fields in 1d with a degenerate mass, the lattice action is

$$S_{FD} = a \sum_{n=0}^{N-1} \left(\bar{\psi}_1(n) (D(n) + m) \psi_1(n) + \bar{\psi}_2(n) (-D^{\dagger}(n) + m) \psi_2(n) \right).$$
 (2)

a non-negative determinant after intergrating our the fermion fields:

$$\det(D+m)\det(-D^{\dagger}+m)$$
=
$$\det(D+m)\det(\gamma_5(-D^{\dagger}+m)\gamma_5)$$
=
$$|\det(D+m)|^2.$$
 (3)

HMC

introduce the pseudo-fermion field (bosonic field ϕ_f) to rewrite the partition function as in the following

$$\int \mathcal{D}\bar{\psi}\mathcal{D}\psi \exp(-S_{FD})$$

$$\sim \int \mathcal{D}\phi_{f,R}\mathcal{D}\phi_{f,I} \exp(-\phi_f^{\dagger}((D+m)(D^{\dagger}+m))^{-1}\phi_f),$$
(4)

where $\phi_f \equiv \phi_{f,R} + i\phi_{f,I}$.

implement the Hybrid Monte Carlo algorithm to calculate:

$$\mathcal{O}_{jk}^{\alpha\beta} \equiv \frac{1}{2} \langle \phi_{f,j}^{\dagger\alpha} \phi_{f,k}^{\beta} + \phi_{f,k}^{\dagger\beta} \phi_{f,j}^{\alpha} \rangle = \left((D+m)(D+m)^{\dagger} \right)_{jk}^{\alpha\beta}, \quad (5)$$
 where $j, k = 1, 2, \cdots, N$; $\alpha, \beta = 1, 2$.

Numerical Result

Figure: We use the HMC to get consistent results with the exact solution. The number of measurements is 2^{12} sweeps with thermalization 2^6 sweeps and measure intervals 2^5 sweeps. The error bars are less than 1%. The $N_{\rm steps}$ is the number of molecular dynamics steps.

2D GNY Model

GNY Model on Lattice

- GN model is UV finite, but it cannot be extended to four dimensions
- studying the Gross-Neveu-Yukawa (GNY) model

$$S_{\text{GNY}}[\bar{\psi}, \psi, \phi] = \int d^2x \left(\bar{\psi}(\partial + m_{\text{F}} + \phi)\psi - \phi\Box\phi + \frac{1}{2g^2}\phi^2 \right)$$
 (6)

- GNY model introduces an additional scalar field ϕ to the GN model, primarily to ensure renormalizability in four dimensions
- kinetic term for ϕ may influence the UV behavior of the model, the expectation is that the essential property of asymptotic safety will still hold in the GNY model

Correlator

000

GNY Model on Lattice

Asymptotic Safety

GNY Model on Lattice

Conclusion and Outlook

- non-Hermiticity allows doubler-free fermion formulation with successful lattice implementation via HMC
- 2D GNY model shows asymptotic safety
- extend to 4D simulation and applications to QCD-like theories

Thank you!