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In this study, we propose the k-Mixture Exponential Hopfield Network (kMEHN) as a framework that bridges
the Classical Hopfield Network (CHN) and the Modern Hopfield Network (MHN) by integrating their struc-
tural characteristics.
The CHN defines an energy function using a single symmetric weight matrix, where stored patterns corre-
spond to stable energy minima \1.
In contrast, the MHN achieves high memory capacity and rapid convergence by employing a smooth, nonlin-
ear energy function over a continuous vector space \2.

The proposed kMEHN inherits the Hebbian rule-based construction of weight matrices from CHN, and com-
binesmultiple suchmatrices via a sum of exponential terms, as used in the exponential-typeMHN \[3], thereby
forming a novel network that exhibits intermediate properties between the two models.
A key feature of kMEHN is its ability to construct an energy landscape that smoothly integrates contributions
from multiple independent groups of memory patterns.
Each weight matrixW (k) is constructed from a specific set of memory patterns {ξ(k)µ }Pk

µ=1 as follows:
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Here, each pattern ξ
(k)
µ ∈ {−1, 1}N is a binary vector of length N , and Pk denotes the number of patterns

in the k-th memory group.
The energy function of kMEHN for a state vector s ∈ {−1, 1}N is given by:

(Equation 2)
E(s) = −

∑K
k=1 exp(s⊤W (k)s)

This structure enables the integrated influence of multiple memory matrices, rather than relying on a single
quadratic form as in CHN, resulting in an energy landscape formally similar to that of MHN.

To evaluate whether the proposedmodel functions effectively as an associative memory system, we conducted
simulations using 4× 4 black-and-white binary images.
The state space consisted of all possible image patterns (216 in total), from which several patterns were se-
lected as memory patterns.
The selected memory patterns were partitioned intoK groups. Since there are multiple possible ways to parti-
tion the patterns, we exhaustively enumerated all possible group partition configurations. For each partition,
we constructed a network based on the energy function defined above (Equation 2).

For every constructed network, we computed the energy of all possible states in the state space and identified
local minima as those states whose energy could not be lowered by a single spin flip.
Among these local minima, those that matched memory patterns exactly were defined as target states, while
all others were considered spurious states. This allowed us to quantitatively evaluate the number of target
and spurious states for each partitioning.
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Figure 1: 7 memory patterns, K = 3 groups.

Figure 2: 10 memory patterns, K = 3 groups.

Figure 1: Spurious State Histogram Description:
Histograms showing the number of group partition patterns for each spurious state count (excluding bit-
inverted target patterns).

• The horizontal axis indicates the number of spurious states.
• The vertical axis shows the number of partitioning patterns with that count.
• Bars are color-coded: orange for partitions in which the number of target states matches the number
of memory patterns, and sky blue otherwise.



Due to the energy function depending on the quadratic forms involving the weight matrices, flipping all bits
of a memory pattern does not change the energy, since these quadratic values remain the same. As a result,
these inverted patterns consistently appear as spurious states.
These inverted patterns were excluded from the spurious state counts in the histograms.
Additionally, having the number of target states equal to the number of memory patterns indicates that all
memory patterns are correctly stored, which is a desirable property for associative memory models.

The results demonstrate that there exist specific partitioning strategies in which spurious states are entirely
eliminated.
This finding highlights a promising direction for controlling or reducing spurious states through the design
of energy-based heterogeneous associative memory networks.
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