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Introduction

Magnetic fields play a key role in star and planet formation within protoplanetary disks. Polarization is typically interpreted as tracing
magnetic field lines via magnetically aligned dust grains. However, recent studies show that self-scattering by large dust grains can produce
significant polarization, complicating this interpretation.[1] To extract the magnetic field structure, we analyze 870 um ALMA polarization
data from the disk around HD 163296, a young Herbig Ae star.

We separate polarization into components from dust self-scattering and magnetic alignment. Self-scattering polarization is simulated with
RADMC-3D, and the remaining signal is used to trace magnetic field morphology, which we then compare with theoretical models.

Background Theory Data & Method
Polarization & Stokes Parameters HD163296 polarization data at a wavelength of 870 um
We use Stokes Parameters to represent the polarization of state of light: from ALMA archive.
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Result & Discussion Observational / Simulated Stokes Images
Polarization Intensity & Polarization Angle Observational Stokes | SbsEvations SEkes @ Observational Stokes U
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