

國立陽明交通大學

Probing the Magnetic Field Structure of the Protoplanetary Disk in HD 163296

Yu-Xuan Lin¹, Shih-Ping Lai², Shang-Jing Lin², Jamie Chang², Ying-Chi Hu², Meng-Zhe Yang²

¹Department of Electrophysics, National Yang Ming Chiao Tung University

²Institute of Astronomy, National Tsing Hua University

Event : 2025 ASROC Contact : nancy.sc11@nycu.edu.tw

Introduction

Magnetic fields play a key role in star and planet formation within protoplanetary disks. Polarization is typically interpreted as tracing magnetic field lines via magnetically aligned dust grains. However, recent studies show that self-scattering by large dust grains can produce significant polarization, complicating this interpretation.[1] To extract the magnetic field structure, we analyze 870 µm ALMA polarization data from the disk around HD 163296, a young Herbig Ae star.

We separate polarization into components from dust self-scattering and magnetic alignment. Self-scattering polarization is simulated with RADMC-3D, and the remaining signal is used to trace magnetic field morphology, which we then compare with theoretical models.

Background Theory

Data & Method

Polarization & Stokes Parameters

拳民國天文學會 Astronomical Society of the Republic of China (Taiwan)

We use Stokes Parameters to represent the polarization of state of light:

- \star I = total intensity
- \bigstar Q = horizontal/vertical polarization \star U = diagonal polarization
- \star V = circular polarization

Self-Scattering Polarization

 $\mathbf{E} \perp \mathbf{B}$

Self-scattering refers to polarization produced when dust grains scatter their own thermal emission. This occurs when grains are large enough to efficiently scatter millimeter-wavelength light.[2] Polarization of

Magnetic Alignment Polarization

Magnetic alignment polarization arises when elongated dust grains align with the magnetic field, making their thermal emission becomes polarized perpendicular to the magnetic field direction.[3]

 $PI = \sqrt{Q^2 + U^2}$

 $PA = \frac{1}{2} \tan^{-1} \left(\frac{U}{Q}\right)$

White lines display the PA,

HD163296 polarization data at a wavelength of 870 µm from ALMA archive.

Location: Sagittarius, 122 pc from Earth

Mass: $2.3 \text{ M}\odot$ Radius: 1.66 R \odot

Temperature: 9330 K Dust Disk Radius : ~200 AU Inclination: 46.95° Position Angle: 47.63° Formation Stage: Class II / III

Result & Discussion

Polarization Intensity & Polarization Angle

Observational / Simulated Stokes Images

and U from observations to obtain residual polarization.

White lines indicate polarization angles, showing a pattern similar to observations. The discrepancy likely arises from the current disk model, which lacks clear ring-gap structures. Future work will refine the model to better match observations and recover the magnetic field structure.

Reference

[1]Dent, W. R. F., et al. "Submillimetre dust polarization and opacity in the HD163296 protoplanetary ring system." Monthly Notices of the Royal Astronomical Society: Letters 482.1 (2019): L29-L33. [2] Ohashi, François. "Radial variations of grain sizes and dust scale heights on the protoplanetary disk of HD 163296." ALMA2019: Science Results and Cross-Facility Synergies (2019): 49. [3] Lazarian, Alex. "Tracing magnetic fields with aligned grains." Journal of Quantitative Spectroscopy and Radiative Transfer 106.1-3 (2007): 225-256.