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Cooling-flow problem, turbulent 
heating, observation and simulation

Entropy, shocks & sound waves, 
velocity dispersion

Simulation setting, how to 
stir the galaxy cluster

Turbulent heating is not enough to 
balance cooling



Illustration: NASA/CXC/M.Weiss

● Radiative cooling rate: Lx ∝ n2

● Cool-core clusters : tcool << tHubble

● Massive gas inflows and high SFR
➝ absent in the observation

● AGN feedback, thermal conduction, 
cosmic rays, and turbulence etc.
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• Hydrodynamic instabilities resulting from 
merger events and AGN feedback etc. ⟶
cascade decay ⟶ dissipating energy into 
heat

• Turbulent heating rate: 𝑄𝑡𝑢𝑟𝑏~𝜌𝜎𝑙3/𝑙
• The heating rate is sensitive to the velocity 

dispersion
• Turbulence driving scale is one of the main 

sources of uncertainty
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• Chandra X-ray surface brightness fluctuations
• Assuming a one–to-one conversion between 

density fluctuations and velocity fluctuations
⟶ Turbulent dissipation can balance radiative 
cooling

5

Zhuravleva et al. (2014)



• By simulating self-regulated AGN 
feedback, turbulent heating alone is 
insufficient to balance the radiative 
cooling is demonstrated

⟶Why there is the discrepancy 
between observations and simulations?
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Li et al. (2017)



• 3D hydrodynamic simulation by 
using the FLASH code

• Perseus-like cluster
• Pre-existing turbulence: Ornstein-

Uhlenbeck (OU) process
• Time-correlated acceleration field
• Single jet activity: bipolar, purely 

kinetic, duration time is 10Myr, jet 
power is 5x1045erg/s
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TurbOnly Both JetOnly

𝜎𝐿𝑂𝑆 = 𝑣𝐿𝑂𝑆2 − 𝑣𝐿𝑂𝑆 2
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• We chose the setting where 𝜎𝐿𝑂𝑆 is comparable to the Hitomi observed level
• 𝑉𝑆𝐹𝑝 𝑟 = 𝑣 𝑥 + 𝑒1𝑟, 𝑡 − 𝑣(𝑥, 𝑡) 𝑝 , which can be used to quantify how velocity 

differences vary with spatial separation 𝑙
• Turbulent heating rate 𝑄𝑡𝑢𝑟𝑏 = 𝜌0𝐶𝑄𝑉

3/𝑙
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• Entropy 𝐾 = 𝑘𝐵𝑇/𝑛𝑒
2/3

• The entropy profiles of the Both run and JetOnly run are almost the same, 
which means that the turbulence does not affect heating significantly
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TurbOnly Both JetOnly
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JetOnly Both

• Even though pre-existing turbulence dominates the velocity field, shocks 
and sound waves are still present from perturbation analysis
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• Our turbulent heating rate, calculated using the VSF, suggests that 
turbulent heating is not sufficient to balance cooling

𝑄𝑡𝑢𝑟𝑏 = 𝜌0𝐶𝑄𝑉
3/𝑙



• Velocity field is dominated by pre-existing turbulence
• However, our results show that jet heating remains dominant
• Our results suggest that turbulent heating may be 

subdominant, consistent with previous simulation studies
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• Time-correlated means the value is related to its recent past 
(autocorrelation time) and beyond that time, the correlation 
decays, and the values behave more independently

• Ornstein-Uhlenbeck (OU) process:
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LOS velocity dispersion Velocity dispersion in k-space

• When 𝜎𝐿𝑂𝑆 is comparable to the Hitomi observed level, but 𝜎𝑘 is significantly 
lower than it

• This could be a potential explanation for the persistent inconsistency between 
observations and simulations
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