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Simulating feedback from active
galactic nuclei in galaxy clusters
with pre-existing turbulence

Jio-Lun Li, Hsiang-Yi Karen Yang
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| Introduction

Cooling-flow problem, turbulent
heating, observation and simulation

| Results

¢  Entropy, shocks & sound waves,
velocity dispersion

Methodology

Simulation setting, how to
stir the galaxy cluster

Conclusion

Turbulent heating is not enough to
balance cooling



Cooling Flow Problem

Radiative cooling rate: L, &X n?

Cool-core clusters : t ., <<ty pple

Massive gas inflows and high SFR

— absent in the observation

AGN feedback, thermal conduction,

cosmic rays, and turbulence etc.
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Illustration: NASA/CXC/M.Weiss



Turbulent Heating

* HydrOdynGmiC instabilities reSU|ting from Kolmogorov energy spectrum
merger events and AGN feedback etc. —
Integral range nertial range | Dissipative range

cascade decay — dissipating enerqgy into —
heat

- Turbulent heating rate: Qs,,~po;3/1

- The heating rate is sensitive to the velocity
dispersion

« Turbulence driving scale is one of the main
sources of uncertainty



Observation vs. Simulation
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Zhuravleva et al. (2014)

« Chandra X-ray surface brightness fluctuations
« Assuming a one-to-one conversion between
density fluctuations and velocity fluctuations

— Turbulent dissipation can balance radiative
cooling
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Perseus cluster
Virgo cluster
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Radiative cooling rate (erg cm= s7)

Zhuravleva et al. (2014)
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' ® Observation vs. Simulation
*

Simulation

» By simulating self-requlated AGN
feedback, turbulent heating alone is
insufficient to balance the radiative
cooling is demonstrated

— Why there is the discrepancy
between observations and simulations?

— Cooling

« Total Heating

— Shock Heating

— Turbulent Heating

Li et al. (2017)
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Methodology

» 3D hydrodynamic simulation by
using the FLASH code TurbOnly

» Perseus-like cluster

» Pre-existing turbulence: Ornstein-
Uhlenbeck (OU) process

 Time-correlated acceleration field

» Single jet activity: bipolar, purely

kinetic, duration time is 10Myr, jet
power is 5x10*°erg/s

“ OLos = \/<VL052) —(v105)?
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Turbulent Heating Rate

LOS velocity dispersion Velocity Structure Function
16648 km/s Kolmogorov

@ * We chose the setting where o0y g is comparable to the Hitomi observed level

- VSE,(r) =(lv(x + ey7, t) — v(x,t)|?), which can be used to quantify how velocity
' differences vary with spatial separation [
-
e - Turbulent heating rate Q. = pOCQV3 /!
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Entropy Profile

TurbOnly JetOnly
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« Entropy K = kgT /n,%/3
* The entropy profiles of the Both run and JetOnly run are almost the same,
which means that the turbulence does not affect heating significantly
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Shocks and Sound Waves (from Jet)

JetOnly

« Even though pre-existing turbulence dominates the velocity field, shocks
and sound waves are still present from perturbation analysis
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Preliminary Result - Turbulent Heating Rate

Qturp = ,DOCQVB/Z
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Radiative cooling rate (erg cm™ s™)

» Our turbulent heating rate, calculated using the VSF, suggests that
turbulent heating is not sufficient to balance cooling

Yo

| ® |
X

12



S

Yo

Conclusion

* Velocity field is dominated by pre-existing turbulence
* However, our results show that jet heating remains dominant

» Qur results suggest that turbulent heating may be
subdominant, consistent with previous simulation studies
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Time-correlated acceleration field

* Time-correlated means the value is related to its recent past
(autocorrelation time) and beyond that time, the correlation
decays, and the values behave more independently

* Ornstein-Uhlenbeck (OU) process:
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Variable

ndim

Xxmin, xXmax
ymin, ymax
zmin, zmax
st_spectform
st_decay
st_energy
st_stirmin
st_stirmax
st_solweight

st_seed
end_time
nsteps
outfilename

Type
integer
real
real
real
integer
real
real
real
real
real

integer

real

integer
Output name (input file st_infilename for FLASH)

string

Time-correlated acceleration field

Default
3

—0.5, 0.5
—0.5, 0.5
—0.5, 0.5
1

0.5

2e-3
6.283
18.95

1.0

140281

5.0

100
”forcingfile.dat”
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Description 5
The dimensionality of the simulation (1, 2, or 3)
Domain boundary coordinates in « direction

Domain boundary coordinates in y direction

Domain boundary coordinates in z direction

Spectral shape (0: band, 1: paraboloid)
Autocorrelation time of the OU process, T' = Lpeak/V
Determines the driving amplitude

Minimum wavenumber stirred (e.g., kmin S 27/ Lbox)
Maximum wavenumber stirred (e.g., kmax = 67/ Lpox)
Mode mixture ¢ = [0,1] in Eq. (17.32). Typical values
are 1.0: solenoidal; 0.0: compressive; 0.5: natural mix-
ture.

Random seed for stirring sequence

Final time in stirring sequence

Number of realizations between ¢t = 0 and end_time
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Velocity Dispersion

LOS velocity dispersion Velocity dispersion in k-space W
0

b —————————————— _:___— Velocity Spectrum L
2 —=- kmin QQ
=== kmax °

—=- Hitomi's measurement

0 100 200 300 400 500 . 2
y

k (1/kpc)

@ * When gy g is comparable to the Hitomi observed level, but gy, is significantly
lower than it

« This could be a potential explanation for the persistent inconsistency between
observations and simulations
10
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