

Simulating feedback from active galactic nuclei in galaxy clusters with pre-existing turbulence

Jia-Lun Li, Hsiang-Yi Karen Yang

Outline

Introduction

Cooling-flow problem, turbulent heating, observation and simulation

Results

Entropy, shocks & sound waves, velocity dispersion

Methodology

Simulation setting, how to stir the galaxy cluster

Conclusion

Turbulent heating is not enough to balance cooling

Ø

Ж

Cooling Flow Problem

- Radiative cooling rate: $L_x \propto n^2$
- Cool-core clusters : t_{cool} << t_{Hubble}
- Massive gas inflows and high SFR
 → absent in the observation
- AGN feedback, thermal conduction, cosmic rays, and turbulence etc.

Illustration: NASA/CXC/M.Weiss

11

Turbulent Heating

- Hydrodynamic instabilities resulting from merger events and AGN feedback etc. → cascade decay → dissipating energy into heat
- Turbulent heating rate: $Q_{turb} \sim \rho \sigma_l^3 / l$
- The heating rate is sensitive to the velocity dispersion
- Turbulence driving scale is one of the main sources of uncertainty

Kolmogorov energy spectrum

Observation vs. Simulation

Zhuravleva et al. (2014)

Ж

- Chandra X-ray surface brightness fluctuations
- Assuming a one-to-one conversion between density fluctuations and velocity fluctuations
- → Turbulent dissipation can balance radiative cooling

Observation vs. Simulation

Simulation

Ж

*:

- By simulating self-regulated AGN feedback, turbulent heating alone is insufficient to balance the radiative cooling is demonstrated
- \longrightarrow Why there is the discrepancy between observations and simulations?

Li et al. (2017)

6

Methodology

- 3D hydrodynamic simulation by using the FLASH code
- Perseus-like cluster
- Pre-existing turbulence: Ornstein-Uhlenbeck (OU) process
- Time-correlated acceleration field
- Single jet activity: bipolar, purely kinetic, duration time is 10Myr, jet power is 5x10⁴⁵erg/s

Ж

*:

///

63

Ж

*:

7

Turbulent Heating Rate

- We chose the setting where σ_{LOS} is comparable to the Hitomi observed level
- $VSF_p(r) = \langle |v(x + e_1r, t) v(x, t)|^p \rangle$, which can be used to quantify how velocity differences vary with spatial separation l
- Turbulent heating rate $Q_{turb} = \rho_0 C_Q V^3 / l$

Ж

 \boxtimes

Ø

Ж

 $\mathbf{\mathbf{x}}$

///

Entropy Profile

• Entropy $K = k_B T / n_e^{2/3}$

 \mathbb{X}

• The entropy profiles of the <u>Both</u> run and <u>JetOnly</u> run are almost the same, which means that the turbulence does not affect heating significantly Ж

Shocks and Sound Waves (from Jet)

• Even though pre-existing turbulence dominates the velocity field, shocks and sound waves are still present from perturbation analysis

Ж

*

Preliminary Result - Turbulent Heating Rate

*

• Our turbulent heating rate, calculated using the VSF, suggests that turbulent heating is not sufficient to balance cooling

F2)

Ж

*

Conclusion

- Velocity field is dominated by pre-existing turbulence
- However, our results show that jet heating remains dominant
- Our results suggest that turbulent heating may be subdominant, consistent with previous simulation studies

Time-correlated acceleration field

111

Ø

Ж

- Time-correlated means the value is related to its recent past (autocorrelation time) and beyond that time, the correlation decays, and the values behave more independently
- Ornstein-Uhlenbeck (OU) process:

$$\mathrm{d}\widehat{\vec{f}}(\vec{k},t) = f_0\left(\vec{k}\right) \underline{\mathcal{P}}^{\zeta}(\vec{k}) \,\mathrm{d}\vec{\mathcal{W}}(t) \,-\, \widehat{\vec{f}}(\vec{k},t) \,\frac{\mathrm{d}t}{T} \,.$$

Time-correlated acceleration field

Variable	Type	Default	Description
ndim	integer	3	The dimensionality of the simulation $(1, 2, \text{ or } 3)$
xmin, xmax	real	-0.5, 0.5	Domain boundary coordinates in x direction
ymin, ymax	real	-0.5, 0.5	Domain boundary coordinates in y direction
zmin, zmax	real	-0.5, 0.5	Domain boundary coordinates in z direction
$\mathtt{st_spectform}$	integer	1	Spectral shape (0: band, 1: paraboloid)
st_decay	real	0.5	Autocorrelation time of the OU process, $T = L_{\text{peak}}/V$
st_energy	real	2e-3	Determines the driving amplitude
st_stirmin	real	6.283	Minimum wavenumber stirred (e.g., $k_{\min} \lesssim 2\pi/L_{\text{box}}$)
st_stirmax	real	18.95	Maximum wavenumber stirred (e.g., $k_{\rm max} \gtrsim 6\pi/L_{\rm box}$)
$\texttt{st_solweight}$	real	1.0	Mode mixture $\zeta = [0, 1]$ in Eq. (17.32). Typical values
			are 1.0: solenoidal; 0.0: compressive; 0.5: natural mix-
			ture.
$\texttt{st_seed}$	integer	140281	Random seed for stirring sequence
end_time	real	5.0	Final time in stirring sequence
nsteps	integer	100	Number of realizations between $t = 0$ and end_time
outfilename	string	"forcingfile.dat"	Output name (input file st_infilename for FLASH)

Ж

••

Velocity Dispersion

Ж

 \bowtie

- When σ_{LOS} is comparable to the Hitomi observed level, but σ_k is significantly lower than it
 - This could be a potential explanation for the persistent inconsistency between observations and simulations

///

Ø

Ж