Probing 3D Gas Kinematics of the HD 163296 Protoplanetary Disk

Jamie Chang (NTHU), Shih-Ping Lai (NTHU) ASROC Annual Meeting 2025

The Hunt for Protoplanets: Recent Studies

▲ Planet-disk simulation explains substructures in AS 209 (DSHARP VII. 2018)

▲ Circumplanetary Disk (CPD) detected in PDS70 (Benisty et al. 2021)

in HD 97048 (Pinte et al. 2019)

Observation

ALMA's Program

Molecules with ALMA at Planet-forming Scales (MAPS)

Target HD 163296 (~101pc)

Line emissions ¹²CO (2-1), ¹³CO (2-1) and C¹⁸O (2-1)

Resolution

~0.15" angular resolution (~15 au) with 0.2 km/s spectral resolution

MAPS website

¹²CO Kink in HD 163296 (Pinte et al. 2018)

Meridional circulation traced in ¹²CO emission in HD 163296 (Teague et al. 2019)

- All moment maps were generated by bettermoments with 3-sigma clipping to the signal.

• 12 CO (2-1) traces the uppermost surface, while C¹⁸O (2-1) traces the closest surface to the midplane.

- All moment maps were generated by bettermoments with 3-sigma clipping to the signal.

• 12 CO (2-1) traces the uppermost surface, while C¹⁸O (2-1) traces the closest surface to the midplane.

Teague et al. 2021

Parameters	Unit	$^{12}CO(2-1)$	$^{13}CO(2-1)$	$C^{18}O(2-1)$
z_0	arcsec	$0.26\substack{+0.00\\-0.00}$	$0.13^{+0.00}_{-0.00}$	$0.07\substack{+0.00\\-0.00}$
ψ	-	$1.33^{+0.02}_{-0.02}$	$1.48^{+0.06}_{-0.05}$	$0.92^{+0.16}_{-0.14}$
r_{taper}	-	$4.12_{-0.02}^{+0.02}$	$2.94^{+0.02}_{-0.02}$	$3.42_{-0.48}^{+3.66}$
q_{taper}	-	$4.51_{-0.23}^{+0.24}$	$7.73_{-0.46}^{+0.50}$	$6.96^{+2.17}_{-3.83}$

Disk Rotation - Keplerian & Non-Keplerian Model

Velocity Profiles

Rotational velocity gradients are consistent with observed substructures

Gas Kinematics within the HD 163296 Protoplanetary Disk

Evidence of Planet – 13 CO Doppler-flip

- Non-axisymmetric
- Spatially coincided with ¹²CO kink structure
- Distance ~ 220 AU
- Only detectable in ¹³CO residual map
- Pinte et. al 2018 proposed a $2M_J$ planet at 260 AU based on CO kink modeling

RA offset [arcsec] RA offset [arcsec]

Evidence of Planet – 13 **CO Doppler-flip** disk rotation 3.0 super-Kep. $v_{kep} + v_{rot}$ 2.5 Dec offset [arcsec] sub-Kep. ($v_{kep} - v_{rot}$ 2.0 1.5 1.0 0.5 1.0

localized circular motion

consistent with this scenario 12

Estimate Planet's Mass – ¹³CO Doppler-flip

2.5

2.0

1.5

1.0

Dec offset [arcsec]

•
$$\Delta v_{los} = \pm 0.18$$
 km/s at 30 AU from the center

Estimate from simple circular motion (only consider rotational velocity)

$$v_{rot} = \sqrt{\frac{GM_p}{r}} \to M_p = \frac{rv_{rot}^2}{G}$$

 $\Delta v_{los} \approx \Delta v_{\phi} cos \phi sini$

 $M_p \approx 4.82 M_J$

Estimate Planet's Mass – ¹³CO Doppler-flip

Estimate planet's mass from FARGO-3D hydrodynamic simulation

convolve with 0.15" beam

Stellar mass: $M_* = 2M_{\odot}$ Viscosity: $\alpha = 10^{-3}$

Conclusion

3D Gas Kinematics

We successfully obtain three-dimensional gas dynamics within HD 163296 disk with multi-transition CO observations from ALMA MAPS.

Radial and Vertical Gas Flow

Our results show co-spatial inflow and outflow, potentially indicating organized meridional circulation within the disk.

Planet Signature and Mass Estimation

We highlight the Doppler-flip feature observed in ¹³CO residual map at 220 AU, suggesting the presence of an embedded planet with the estimated mass to be 5~6 M_J constrained by hydrodynamic simulations.</sub>

Workflow Summary

¹²CO MCMC Corner Plot

¹³CO MCMC Corner Plot

C¹⁸O MCMC Corner Plot

6 MJ

T = 0.26 Myrs

5 MJ

4 MJ

3 MJ

T = 0.26 Myrs

2 MJ

1 MJ

Model Setup

$$M_* = 1M_{\odot}$$

$$r = 10 \sim 700 \text{ AU}$$

$$\theta = \pi/2 \sim \pi/2 - 0.5 \text{ (half disk)}$$

$$v_{res,channel} = 100 \text{ m/s}$$

Velocity Field

$$\begin{aligned} v_{\phi} &= v_{kep} \\ v_r &= +\ 100 \times sin(2\pi \frac{r}{100 \text{AU}}) \ \text{m/s} \text{ ,for r} > 100 \text{AU} \\ v_z &= -\ 100 \times sin(2\pi \frac{r}{100 \text{AU}}) \ \text{m/s} \text{ ,for r} > 100 \text{AU} \end{aligned}$$

Validation of Velocity Decoupling

Validation of Velocity Decoupling

