NICER Magnetar Burst Catalog

朱哲延 Che-Yen Chu (National Changhua University of Education), Chin-Ping Hu, and the NICER Magnetar and Magnetosphere team

ASROC 2025

NICER Magnetar Burst Catalog

Magnetar and its burst

- Data selection
- Burst searching
- Catalog

Artist's illustration of a magnetar burst (Credit: NASA)

Magnetar

Neutron stars with extremely high magnetic field (Duncan & Thompson 1992)

Slow rotation period, high period derivative

- \rightarrow high magnetic field
- \rightarrow young characteristic age
- \rightarrow low spin-down power

Magnetar burst

Time

Magnetar burst – FRB association

FRB 200428 associate with a magentar X-ray short burst (Mereghetti et al. 2020) Burst properties are different before and after an FRB (Hu et al. 2025)

(Credit: NASA)

Magnetar I	Exposure time (ks)	
CXOU J010043.1-721	L134	644.6
4U 0142+61		305.7
SGR 0418+5729		18.7
SGR 0501+4516		484.9
1E 1048.1-5937		373.0
1E 1547.0-5408		78.7
Swift J1555.2-5402		118.1
PSR J1622-4950		46.0
CXOU J164710.2-455216		166.9
1RXS J170849.0-400910		84.1
CXOU J171405.7-381031		3.7
SGR J1745-2900	1	77.7
SGR 1806-20		37.2
XTE J1810-197		496.6
Swift J1818.0-1607		181.2
Swift J1822.3-1606		14.7
SGR 1830-0645		245.1
1E 1841-045		338.6
SGR 1900+14		0.4
SGR 1935+2154		1032.5
1E 2259+586		161.6

Data

All the available magentar observations 2017 June – 2024 November (~7.5 yrs)

Total exposure of 4900 ks of data from 21 magnetars

Select 0.5 – 8 keV events for further analysis

Apply Bayesian Block on the event list to detect rapid changes (Scargle 1998)

Select block duration < 1s

Calculate Poisson probability P-value < 10⁻⁴ (# of trial considered)

Magnetar Exposure time (ks) Burst				
CXOU J010043.1-721134	644.6	8		
4U 0142+61	305.7	5		
SGR 0418+5729	18.7	0		
SGR 0501+4516	484.9	5		
1E 1048.1-5937	373.0	5		
1E 1547.0-5408	78.7	2		
Swift J1555.2-5402	118.1	75		
PSR J1622-4950	46.0	1		
CXOU J164710.2-455216	166.9	1		
1RXS J170849.0-400910	84.1	3		
CXOU J171405.7-381031	3.7	0		
SGR J1745-2900	77.7	2		
SGR 1806-20	37.2	4		
XTE J1810-197	496.6	3		
Swift J1818.0-1607	181.2	33		
Swift J1822.3-1606	14.7	2		
SGR 1830-0645	245.1	134		
1E 1841-045	338.6	14		
SGR 1900+14	0.4	0		
SGR 1935+2154	1032.5	653		
1E 2259+586	161.6	1		

We found 951 bursts from 18 magnetars

Magnetar Exposure time (ks) Burst				
CXOU J010043.1-721134	644.6	8		
4U 0142+61	305.7	5		
SGR 0418+5729	18.7	0		
SGR 0501+4516	484.9	5		
1E 1048.1-5937	373.0	5		
1E 1547.0-5408	78.7	2		
Swift J1555.2-5402	118.1	75		
PSR J1622-4950	46.0	1		
CXOU J164710.2-455216	166.9	1		
1RXS J170849.0-400910	84.1	3		
CXOU J171405.7-381031	3.7	0		
SGR J1745-2900	77.7	2		
SGR 1806-20	37.2	4		
XTE J1810-197	496.6	3		
Swift J1818.0-1607	181.2	33		
Swift J1822.3-1606	14.7	2		
SGR 1830-0645	245.1	134		
1E 1841-045	338.6	14		
SGR 1900+14	0.4	0		
SGR 1935+2154	1032.5	653		
1E 2259+586	161.6	1		

We found 951 bursts from 18 magnetars

SGR 1935+2154

2020 Apr burst storm (Younes et al. 2020)

Magnetar Exposure time (ks) Burst				
CXOU J010043.1-721134	644.6	8		
4U 0142+61	305.7	5		
SGR 0418+5729	18.7	0		
SGR 0501+4516	484.9	5		
1E 1048.1-5937	373.0	5		
1E 1547.0-5408	78.7	2		
Swift J1555.2-5402	118.1	75		
PSR J1622-4950	46.0	1		
CXOU J164710.2-455216	166.9	1		
1RXS J170849.0-400910	84.1	3		
CXOU J171405.7-381031	3.7	0		
SGR J1745-2900	77.7	2		
SGR 1806-20	37.2	4		
XTE J1810-197	496.6	3		
Swift J1818.0-1607	181.2	33		
Swift J1822.3-1606	14.7	2		
SGR 1830-0645	245.1	134		
1E 1841-045	338.6	14		
SGR 1900+14	0.4	0		
SGR 1935+2154	1032.5	653		
1E 2259+586	161.6	1		

We found 951 bursts from 18 magnetars

SGR 1935+2154

2020 Apr burst storm (Younes et al. 2020) 2022 Oct burst storm (Hu et al. 2025)

Burst analysis

T90 duration (5% - 95% cts duration) Fit a step function \rightarrow step height = total burst cts \rightarrow 5% and 95 % cts \rightarrow T5 and T95 Spectra fitting Fit a black body radiation (BB) fix nH fix BB temp. for low-cts burst

T90 distribution

SGR 1935 is different from others

2 μs-scale bursts

T90 distribution

Fermi/GBM magnetar burst catalog (8-200 keV) T90 peak at ~ 150 ms (Collazzi et al. 2015)

Hardness ratio (HR) distribution

 $\mathsf{HR} = \frac{hard - soft}{hard + soft}$

Soft photon: 0.5-4 keV Hard photon: 4-8 keV

HR distribution (vs T90)

Fluence distribution

Fit fluence > 10⁻¹⁰ with power law

Detection limit ~ 4x10⁻¹¹ 100% detection efficiency ~ 2x10⁻¹⁰

Flux vs T90

BB temperature distribution

*low-counts bursts excluded

BB temperature vs HR and T90

*low-counts bursts excluded

We build a magnetar burst catalog using NICER data

Bursts of SGR 1935+2154 differ significantly from others

Future work

Study SGR 1935+2154 in detailed

Include magnetar-like pulsar PSR J1119-6127 and PSR J1846-0258