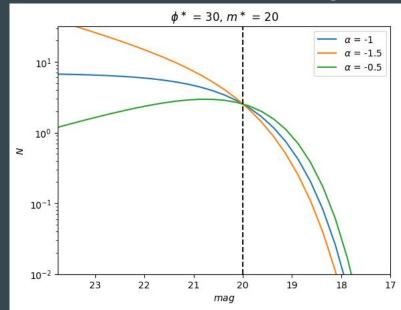
Luminosity Functions of Galaxy Clusters in eROSITA Final Equatorial-Depth Survey

HungYu, Lin Supervisor: Prof. I-Non Chiu NCKU physics

Outline

- 1. Introduction
- 2. Data
- 3. Cluster LF
- 4. Defining subsamples
- 5. Result
- 6. Conclusion
- 7. Appendix

Introduction


Luminosity Function (LF)

- Number of galaxies v.s their luminosity (magnitude) in a cluster
- Depend on the environment and galaxy type
- Inform the galaxy formation and cosmic structure

The Schechter Function

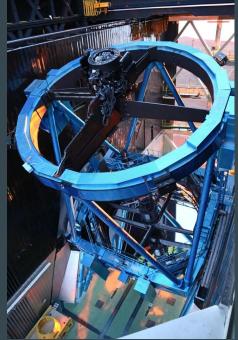
Fig.6

- Fit the luminosity function
- The goal is to measure LF through it
- Three parameters: φ*, α, L* (or m*): φ*: Normalization (Galaxy abundance)
 α: Faint-end slope m*: Characteristic magnitude

$$\frac{dN}{dm} = (0.4\ln 10)\phi^* \left[10^{0.4(m^*-m)}\right]^{\alpha+1} \exp\left[-10^{0.4(m^*-m)}\right]$$

Remodel

- $m^* = m^*_{\text{predict}} + \Delta m$ $\phi^* = \phi^* (M) = A(M / M_{\text{piv}})^B, M_{\text{piv}} = 10^{14} M_{\odot}$
- Expect B ~ 1, $\Delta m \sim 0$ \bullet
- Four parameters in total: A, B, α , Δm \bullet


$$\frac{dN}{dm} = (0.4\ln 10)\phi^* \left[10^{0.4(m^*-m)}\right]^{\alpha+1} \exp\left[-10^{0.4(m^*-m)}\right]$$

The Hyper Suprime-Cam Subaru Strategic Program (HSC-SSP)

Fig.1

- With camera Hyper Suprime-Cam (HSC) installed at the prime focus of the Subaru 8.2m telescope
- g/r/i/z/y bands with depth 26.5/26.5/26.2/25.2/24.2
- Three layers: 1. Wide
 - 2. Deep 3. Ultradeep
- Cover ~ 1200 deg^2
- We used Wide, PDR3 as the galaxy data

The eROSITA Final Equatorial-Depth Survey (eFEDS)

- The eROSITA X-ray telescope on board the Spectrum-Roentgen-Gamma (SRG) observatory
- Collect X-rays in the 0.2-2keV energy band
- Identify 542 clusters with 0.1 < z < 1.3
- Detecting regions overlaps with the HSC survey

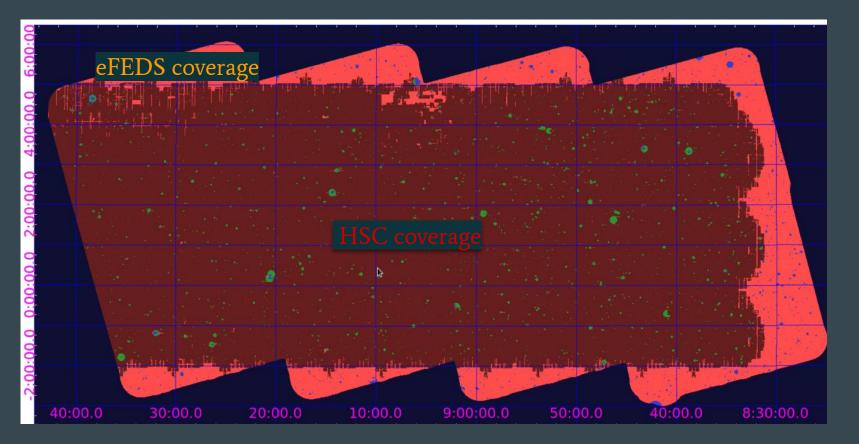


Fig.2:Klein et al. A&A, 661, A4 (2022)

The Cluster Mass & Radius & m* model

- Reason: We need the radii to identify the cluster regions, mass for the model, and m* for deciding the fitting magnitude range
- Halo masses (\overline{M}_{500c}), Radii(r_{500c}):

They are provided by Chiu, Klein, et al. (2023), through the empirical scaling relations between the cluster halo mass and the X-ray count rate, the optical richness, and the weak-lensing mass

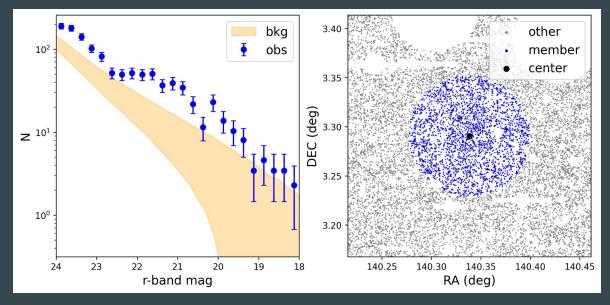
m*_{predict}:

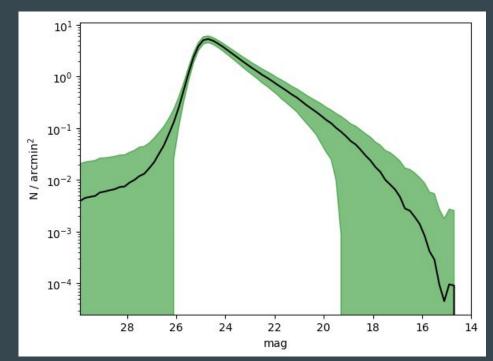
The characteristic magnitude was predicted by fitting metallicity-luminosity relation to the red-sequence over density (Chiu in prep.), calibrated by a BC03 passively evolution model with exponentially decaying time scale tau = 0.4Gyr.

Cluster LF

Identify the LF observation

- We have the radii and the masses of the clutsters
- Observation is fitted by Model LF = Schechter + Background
- The galaxies enclosed by the circles are the member candidates

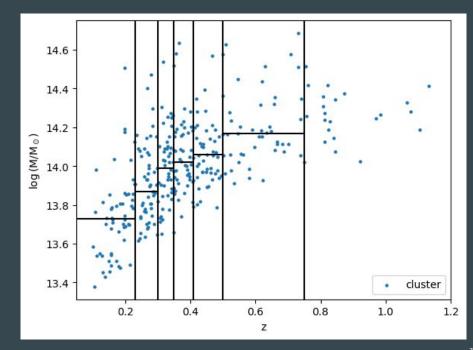



Fig.3

The Background LF

- Estimate the background by averaging the LF of random apertures
- r = median radius = 2.35'

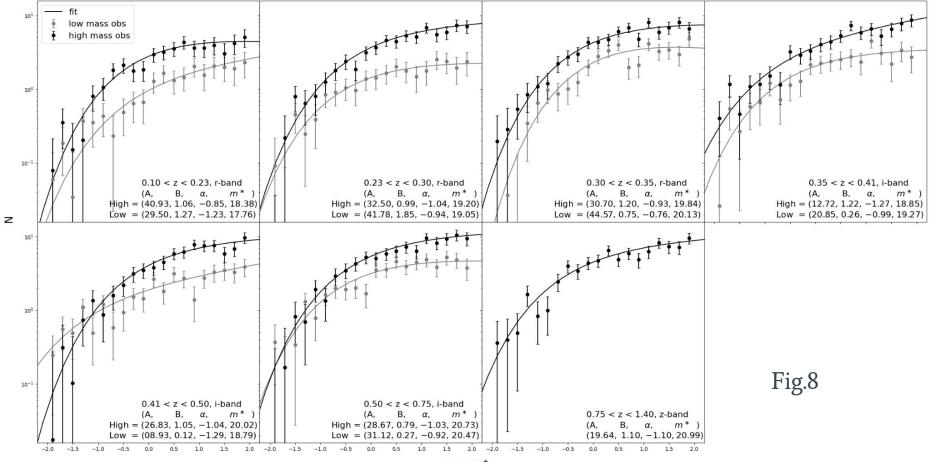
Fig.4


- 3000 apertures
- Avoid clusters

Defining Subsamples

Defining subsamples

- Clusters are grouped based on their redshift/masses
- 20 ~ 30 clusters for each group

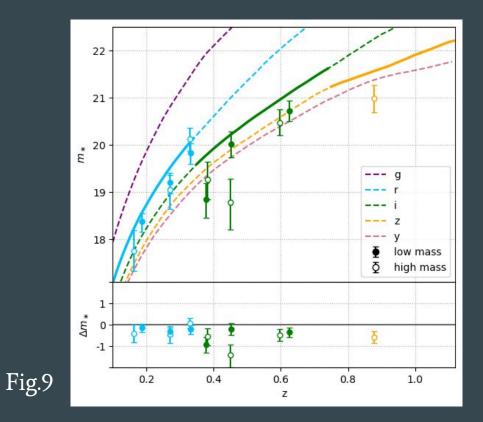


Fitting bands & magnitude range

- The bands which just redder than 4000Å break were used for each group
- Depend on the cluster redshift
- Only magnitude between $m^*_{prediction} \pm 2$ were used in the fitting

redshift	< 0.35	0.35 ~ 0.75	> 0.75
band	r	i	z

Result


 $m - m^*$

Conclusion

Conclusion

- $\alpha \approx -1$ for every group
- Δm tends to be negative

Possible reason: The prediction didn't take the blue population into account \Rightarrow It's brighter in the fitting

 $\phi^* (\overline{\mathbf{M}) = \mathbf{A}(\mathbf{M} / \mathbf{M}_{\text{piv}})^{\text{B}}}$

Conslusion

- Not all groups have $B \approx 1$
- Heavier clusters have more stable $B \approx 1$ and lower errors
- No redshift dependence

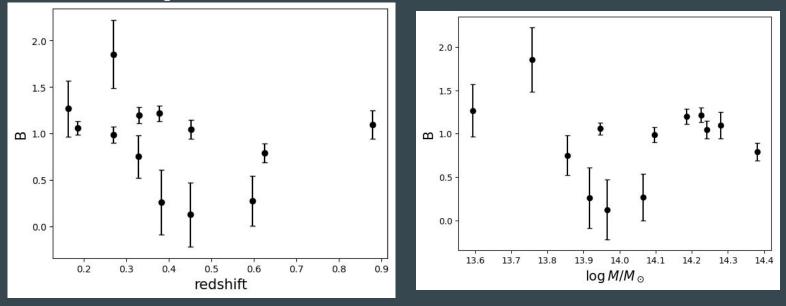


Fig.10₂₂

Reference

Fig.1: <u>開放博物館</u>

Fig.2: <u>Klein et al. A&A, 661, A4 (2022)</u>

Reference

- Lan T.-W., Ménard B., Mo H., 2016, MNRAS, 459, 3998
- Klein et al. A&A, 661, A4 (2022)
- Aihara H., AlSayyad Y., Ando M., Armstrong R., Bosch J., Egami E., Furusawa H., et al., 2022, PASJ, 74, 247.
- Chiu, Klein, et al., Monthly Notices of the Royal Astronomical Society, Volume 522, Issue 2, June 2023, Pages 1601–1642,

Appendix

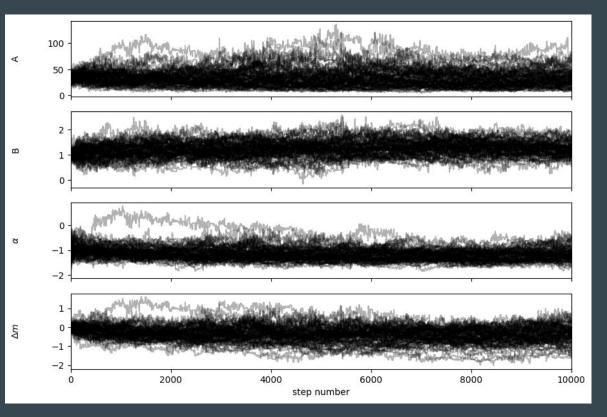
MCMC Fitting

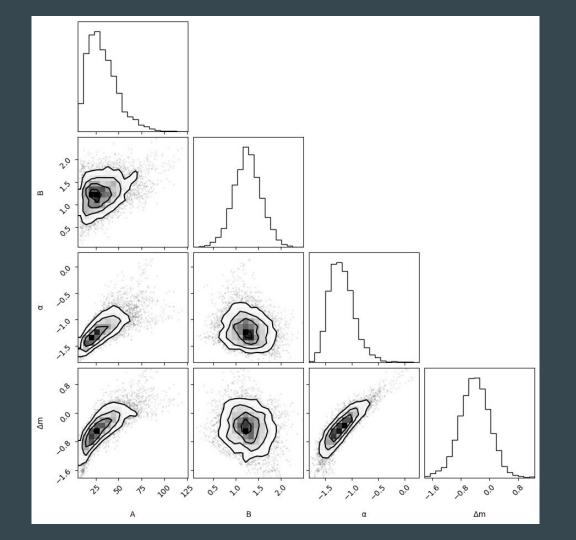
Markov chain Monte Carlo Method (MCMC)

- Map a probability distribution by a random process
- Require a probability function ~ Prior × Likelihood to run
- Prior: $0 < \phi^* < 1000, 15 < m^* < 25, -5 < \alpha < 5$ background LF > 0. It follows N(μ_{bkg} , σ_{bkg}^2) \leftarrow From 3000 random apertures
- Likelihood:

It's Poisson(λ = model LF = Schechter + background) for the observational LF

Markov chain Monte Carlo Method (MCMC)


• The probability function of each group is the product of each cluster probability


$$Prob = \Pi_i \operatorname{Prior}(i) \times \operatorname{Likelihood}(i)$$

• The probability function is built \Rightarrow We can run MCMC

Convergence

• Converge for every group

