Simultaneous Multi-site, Multi-wavelength, and Multimessenger Monitoring of the Nearby Red Dwarf GJ 3147

Tai, Chen-Yu¹, Chen, Wen-Ping¹, Tsai, AL¹, Lalchand, B¹, Sharma, T¹,

Hu, SM², Wu, H³, Zheng, J³, Zhou, AY³, Wei, JY³, Wang, J³, Bai, JY³,

Qian, SB⁴,Zhu, LY⁴, Liu, JZ⁵, Hojaev, A⁶, Panwar, N⁷

¹ Institute of Astronomy, National Center University, Taoyuan City, Taiwan; ² Weihai Observatory, Shandong, China; ³ Xinglong Observatory, Hebie, China; ⁴ Gaomeigu Observatory, Lijiang, China; ⁵ Nanshan Observatory, Xinjiang, China; ⁶ Maidanak Observatory, Tashkent, Uzbekistan; ⁷ ARIES, Nainital, India

Email: m1129005@gm.astro.ncu.edu.tw

Stellar Flares

- Reconnection of surface magnetic field lines can produce flares. (Benz and Güdel 2010)
- Late M-type Stars:

low-mass, fully convective dynamos, and magnetically active

≻The detailed mechanism uncertain

Credit: S. Dagnello, NRAO/AUI/NSF

- We are interested in the heating and cooling processes of the stellar flares.
- ⇒ A campaign to observe stellar flares by:
 1. Different sampling functions → Underlying flare profile.
 2. Different wavelengths → Flare temperature.

Monitoring Campaign

- Target: GJ3147 (LP245-10)
 - R.A. = 02:1710.02 DEC. = +35:26:32.54 J2000, Spectral Type: M7V
 - Parallax: 96.7355 ± 0.0475 [mas], Distance ~ 10.34 [pc]

- Campaign:
 - 2021 November 11^{th} to 17^{th}
 - 7 East- to Mid-Asian observatories
 - 100 data hours
 - \rightarrow detected **3 major** + numerous minor flares
- Simultaneous observations in photometry and point photopolarimetry
 3

GJ3147 2021.11.03 @Xinglong 60 cm; R band120 s

(Newton et al 2014)

Detection of a giant flare

- The 2021 November 16 major flare was detected by four telescopes.
- Photometry: Weihai, Lijiang, and Nanshan
- Photopolarimetry: Lulin

 $\Delta R \sim 0.12 \text{ [mag]}$ by Weihai at 22820.0 s $\Delta R \sim 0.14 \text{ [mag]}$ by Lijiang at 22812.0 s $\Delta R \sim 0.24 \text{ [mag]}$ by Nanshan at 22819.0 s

\Rightarrow Intrinsic flare parameters

Derivation of the underlying profiles

• We assume an impulse flare.

$$f(t) \begin{cases} = 0 , t < t_1 \\ = A , t = t_1 \\ = Ae^{-(t-t_1)/\tau}, t > t_1 \end{cases}$$

$$t_1: \text{ The peak time,} \\ A: \text{ Peak amplitude} \\ \tau: \text{ decay time constant} \end{cases}$$

$$t_1 = (22464..\ 23328, \Delta t = 0.1s)$$

$$A = (0.1..\ 5.0, \Delta A = 0.01)$$

$$\tau = (1 \times 10^{-4}..10 \times 10^{-4}, \Delta \tau = 1 \times 10^{-4})$$

 \Rightarrow Over 40 million simulated light curves

- Calculated Light Curves ↔ Observed Light Curves
- Combine reduced χ^2_{ν} = conditional probability of the parameters

\Rightarrow the underlying profiles

Best-fitting Profile vs. Poorly-fitting Profile

The Same Flare but with Photopolarimetry

- Lulin Observatory provided polarization and simultaneous photometry at g', r', and i'.
- Flare peak:

$$\frac{\Delta F}{\tilde{F}} = 69\% \text{ in } g'$$
$$\frac{\Delta F}{\tilde{F}} = 28\% \text{ in } r'$$
$$\frac{\Delta F}{\tilde{F}} = 5\% \text{ in } i'$$

 \Rightarrow Flare temperature estimation

 \Rightarrow Linear polarization detection (quiescent) 5.8% at g', 2.0% at r', and 0.5% at i'

It might be due to scattering in an inhomogeneous, dusty, and cold atmosphere or prolonged shape due to fast rotation. (Zapatero Osorio et al. 2005, ApJ, 621, 445)

Flare Temperature Estimation

- We assume the flare to be a blackbody.
- \Rightarrow Flare temperature = 6800 \pm 300 K

Conclusion

- We report a successful multi-site, multi-wavelength, and multi-messenger campaign for GJ3147 from November 11th to 17th, 2021.
- Multi-site ⇒ Intrinsic flare parameters
 ➤To get the 'True' heating and cooling time scales.
- Multi-wavelength ⇒ flare temperature (6800 ± 300K)
 Sampling effect will NOT affect temperature estimation due to flux ratio.
- Multi-messenger \Rightarrow photometry and polarimetry

Backup slides

Combine Reduced χ^2_{ν} of the Simulated Light Curves Well-fitting parameters Polarization Detection in Lulin Spectrum Model Introduction

Combine Reduced χ^2_{ν} of the Simulated Light Curves

- Three telescopes observed the flare event which means there will be three reduced χ^2_{ν} in each simulation.
- We find out that both geometric and arithmetic mean will reveal the same best-fitting parameter. However, we use the geometric mean on this research.

Well-fitting parameters

- After selecting the 35 light curves, we checked the parameter distributions and decided on the ranges.
- Results: $\Delta m = 0.29 \pm 0.01$, $t_1 = 22795.1 \pm 0.9$, $\tau = 5 \times 10^{-3}$

The histograms showed the distributions of Δm , t_1 , and τ .

Polarization Detection in Lulin

• In Lulin, the polarization detections weren't simultaneous, so we can only detect the star polarization information in quiescent states.

13

Polariztion Detect in Different Band

Spectrum Model Introduction

- By Husser et al. from Germany.
- In this model, they considered more newly discovered atomic and molecular lines. (like alpha elements eg.: Mg, Ti, Si, Ca, S)
- The table below is the parameter space of the model.

Variable	Range	Step size
$T_{\rm eff}$ [K]	2300-7000	100
	7000-12 000	200
$\log g$	0.0 - + 6.0	0.5
[Fe/H]	-4.0 - 2.0	1.0
	-2.0 + 1.0	0.5
$[\alpha/\text{Fe}]$	-0.2 - +1.2	0.2

Notes. Alpha element abundances $[\alpha/\text{Fe}] \neq 0$ are only available for 3500 K $\leq T_{\text{eff}} \leq 8000$ K and $-3 \leq [\text{Fe}/\text{H}] \leq 0$.

High resolution spectra

All high resolution spectra are available for download at:

ftp://phoenix.astro.physik.uni-goettingen.de/HiResFITS/

Download of single spectra

Please select the spectrum you want to download:

14