

Unveiling HI and Gas-PAH Relations at Sub-kpc Scales: A VLA Perspective

I-Da Chiang (江宜達) [ASIAA]*, Karin M. Sandstrom [UCSD], Eric Koch [Harvard CfA], Adam Leroy [OSU], with *z*0MGS and PHANGS collaborations

*idchiang@asiaa.sinica.edu.tw

0. Gas and PAH basics

Gas: Stars form in cold, dense molecular clouds in the interstellar medium (ISM). Neutral gas fuels star formation and is a key to diagnosing star-forming conditions. Therefore, observing neutral gas is essential to understand star formation and galaxy evolution. Two key components of neutral gas are the molecular and atomic phases.

- Molecular gas: could be traced by low-J CO rotational emission lines, e.g. CO (2-1) at 1.3 mm (230 GHz).

matic rings. They emit strong C-H and C-C stretch and bending features at 3.3, 6.2, 7.7, 8.6 and 11.3 μ m. PAHs take ~ 4% of the interstellar dust mass in star-forming galaxies.

2. New HI Observations

Pushing to Atomic ISM: Existing HI 21 cm data lacks the resolution or sensitivity for Gas-PAH analysis. We conducted new observations at ~ 7" resolution, $1-\sigma \sim 1 \ M_{\odot} \ pc^{-2}$ to extend the analysis to atomic ISM. The observations are being done with the VLA B+C+D configurations (4 galaxies) and MeerKAT (10+ galaxies).

to-dust mass fraction (q_{PAH}) , and strength of interstellar radiation field (U). To the first order, we expect:

1. RECENT OBSERVATIONS WITH JWST

-1.0	$\begin{array}{c} 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\$	<u>і і і і і </u>	Disks 2 (Jy sr ⁻¹]	-1		1 $1_{\rm Dg_{10}} I_{\rm F770W_{PAH}}$ [MJy	2 sr ⁻¹]	3
:	X	$N_{\rm gal}$	$N_{\rm pix}$	$\log_{10} \mathrm{CO}/X$	r	\overline{m}	σ	-
	$ m F335M_{PAH}$	19	296834	1.27 ± 0.38	0.58	1.01 ± 0.10	0.44	
	$\mathrm{F770W}_{\mathrm{PAH}}$	70	2090731	0.03 ± 0.35	0.64	0.90 ± 0.07	0.43	
	F770W	70	2120025	-0.00 ± 0.35	0.64	0.91 ± 0.07	0.43	
	F1130W	20	972892	-0.12 ± 0.37	0.63	1.02 ± 0.09	0.44	

Columns: X - JWST band compared to CO (2-1), where the subscript "PAH" indicates that stellar continuum has been subtracted; N_{gal} – number of galaxies used in this analysis; $N_{\rm pix}$ – number of sightlines included in this analysis; $\log_{10} {\rm CO}/X - \log$ of median ratio of CO (2-1) [K km s⁻¹] to intensity in [MJy sr⁻¹] in X; r – rank correlation relating CO (2-1) and X; m – best-fit power-law index of CO (2-1) to X; σ – rms scatter [dex] from the best fit.

Leroy+23, ApJL, 944, L9; Chown+25, ApJ, 983, 64

- After considering the CO-to-H₂ conversion factor, the Gas-PAH relation is no longer linear. Instead, it has a power-law index shallower than a linear relation.
- The power law extends to $R_{mol} = H_2/HI < 1$.
- In the outer disk (HI-only & IRAC 8 μ m), the Gas-PAH relation is weak or no longer exists.

X	Bin range	m	\mathbb{R}^2	ρ
$F335M_{PAH}$	-2.4 to -0.2	$0.51 {\pm} 0.06$	0.891	0.94
$ m F770W_{PAH}$	-0.8 to 1.2	$0.72 {\pm} 0.02$	0.992	1.00
F770W	-0.8 to 1.2	$0.72{\pm}0.03$	0.988	0.99
F1130W	-0.8 to 1.3	$0.68 {\pm} 0.03$	0.980	0.99

Columns: X - JWST band compared with Σ_{gas} ; Bin range – The range of the JWST band $[\log(MJy \ sr^{-1})]; R^2 - R$ -squared value of the fitting; ρ - Pearson's correlation coefficient of binned data. Using α_{CO}^{SL24} and 542 pc data.

Chiang et al. in preparation