

ASROC 2025.05.17 NFU

Impact of r-Process Heating on Disk Outflow from Neutron Star Mergers

Li-Ting Ma¹, Kuo-Chuan Pan¹, Meng-Ru Wu², Rodrigo Fernàndez³

¹Department of Physics and Institute of Astronomy, National Tsing Hua University ²Institute of Physics, Academia Sinica ³Department of Physics, University of Alberta

Theory - Outflows from Binary Neutron star Mergers

- During the merges, mass ejection occurs on dynamical timescales due to tidal force, producing ~10⁻⁴ to 10⁻² M_☉ of material with escape velocities of ~0.1-0.3c. (Metzger et al. 2014)
- After the merger, some of the material is still gravitationally bound and can form an accretion disc of up to 0.3 $\rm M_\odot$ that expand slower and evolves on longer timescales.
- The ejected material rapidly decompress from nuclear densities, then went through r-process nucleosynthesis which produce unstable nuclei and power the kilonova. (Ruffert & Janka 1999; Stephens et al. 2008)

Observation – GW170817 / GRB170817A

Binary neutron star merger (1.3 / 1.5 Msun), at ~40 Mpc

Abbottetal et al. 2017

Savchenko et al. 2017

Sneppen et al. 2023

Motivation and previous studies

- Feedback of r-process nuclear energy can alter the outflow properties.
- Most of the numerical studies separate hydrodynamical simulations and post-process nuclear networks. Therefore the feedback of r-process heating is not considered in the hydro simulations.
- Recently, several works have considered the heating feedback in the hydrodynamic simulation by different attempts with various simplifications. (H. Klion, 2021; F. Foucart, 2021; M. Haddadi, 2022; I. Kullmann, 2022)

This project

• Perform viscous hydrodynamic simulations with self-consistent heating treatment to investigate the heating feedback on the post-merger disk.

Simulation setup

Disk model (Fernàndez et al. 2013):

- FLASH (Eulerian Grid based code)
- Spherical coordinate in 2D
- Viscosity: α-disk
- Neutrino scheme: leakage scheme for cooling lightbulb scheme for absorption
- Passive tracers for data recording and providing heating informations.

Initial condition:

- central BH: mass=2.65 $\rm M_{\odot}$, spin=0.8
- equilibrium torus: constant s = 8 kb/baryon, Ye = 0.1, mass = 0.1 M_{\odot} , Rd = 50 km

Nuclear heating Implementation

Wu et al. 2019

r-process heating rate is based on the initial electron fraction (Ye) and temperature.

0.3 $\underset{\circ}{P}$ Local condition to add heating: (1) Temperature < 4GK (2) Radial velocity > 0

Parametertized nuclear heating based on

• Initial Ye:

Ye value when tracer temperature first drops below 6GK.

• Local fluid temperature

Energy evolution

Ejecta radial velocity

Initially low Ye component remain low Ye value.

Contribute higher heating rate and start heating earlier.

 \Rightarrow fast component

With the nuclear heating feedback:

- → material get unbound earlier
- → unbound mass increases by ~10%

Effect on convection

12

Summary

- We investigate the r-process heating feedback on the outflow properties by implementing parameterized heating energy in the viscous hydrodynamic simulations.
- Viscosity dominates the evolution at earlier phases, and r-process heating dominates later evolution.
- Nuclear heating increases the ejecta mass by ~10%.
- Without heating feedback, the mass unbound time is significantly delayed.
- Nuclear heating suppresses the convection at the inner region and increases radial velocity by a factor of 2.