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Theory - Outflows from Binary Neutron star Mergers

During the merges, mass ejection occurs on dynamical timescales due to tidal
force, producing ~10™ to 10 M of material with escape velocities of
~0.1-0.3c. (Metzger et al. 2014)

After the merger, some of the material is still gravitationally bound and can
form an accretion disc of up to 0.3 M that expand slower and evolves on
longer timescales.

The ejected material rapidly decompress from nuclear densities, then went
through r-process nucleosynthesis which produce unstable nuclei and power
the kilonova. (Ruffert & Janka 1999; Stephens et al. 2008)



Observation —- GW170817 /| GRB170817A
Binary neutron star merger (1.3 /1.5 Msun) , at ~40 Mpc
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Motivation and previous studies

e Feedback of r-process nuclear energy can alter the outflow properties.

e Most of the numerical studies separate hydrodynamical simulations and post-process
nuclear networks. Therefore the feedback of r-process heating is not considered in the
hydro simulations.

e Recently, several works have considered the heating feedback in the hydrodynamic

simulation by different attempts with various simplifications. (H. Klion, 2021; F. Foucart, 2021;
M. Haddadi, 2022; I. Kullmann, 2022)

This project

e Perform viscous hydrodynamic simulations with self-consistent heating treatment to
investigate the heating feedback on the post-merger disk.



Disk model (Fernandez et al. 2013):

Simulation setup

=
o
O

FLASH (Eulerian Grid based code)

e Spherical coordinate in 2D M
e Viscosity: a-disk 107 E
e Neutrino scheme: RS
leakage scheme for cooling 10° 2
lightbulb scheme for absorption C
e Passive tracers for data recording 103 3
and providing heating informations.
—2 10!
0 1 2 3 4
Initial condition: X [em] le7

central BH: mass=2.65 M , spin=0.8
equilibrium torus: constant s = 8 kb/baryon, Ye = 0.1, mass =0.1 M, Rd = 50 km



Nuclear heating Implementation

0.5 r-process heating rate is based on the
initial electron fraction (Ye) and

ﬁ, 0.4 temperature.
o
2 0.3 o Local condition to add heating:
% : (1) Temperature < 4GK
é 10.2”  (2) Radial velocity > 0
0 io.l | |
L Parametertized nuclear heating based on
10° 108 107 e Initial Ye:
Temperature [K] Ye value when tracer temperature

Wu et al. 2019 first drops below 6GK.

e Local fluid temperature



Energy evolution
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Radial velocity [c]

Ejecta radial velocity

Heating
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Initially low Ye component remain low Ye value.

Contribute higher heating rate and start heating earlier.

= fast component
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Unbound mass [MO]
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With the nuclear heating feedback:

unbound mass increases by ~10%
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Effect on convection
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Summary

We investigate the r-process heating feedback on the outflow properties
by implementing parameterized heating energy in the viscous
hydrodynamic simulations.

Viscosity dominates the evolution at earlier phases, and r-process heating
dominates later evolution.

Nuclear heating increases the ejecta mass by ~10%.
Without heating feedback, the mass unbound time is significantly delayed.

Nuclear heating suppresses the convection at the inner region and
increases radial velocity by a factor of 2.
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