From Simulation to Spectra:

Investigating AGN Wind-Disk Interactions and Asymmetric Galactic Outflows

Chiung-Yin Chang (NTHU), Hsiang-Yi Karen Yang(NTHU)

Take-Home Messages

- Asymmetric outflows form in our 3D-SRHD simulations when AGN winds interact with a clumpy galactic disk.
- This wind-disk interaction provides a plausible explanation for the intrinsic one-sided outflow observed in NGC 7469 with JWST.
- [NeV] mock spectra show velocity asymmetry but underestimate true speeds due to limited emission from hot, diffuse gas.
- Cooling timescales are much longer than the time of simulation, justifying our decision to neglect radiative cooling.

Motivations

AGN wind is a candidate for the formation of the Fermi and eROSITA bubbles. We investigate this using simulations and discovered that early asymmetries can arise from interactions between AGN winds and a clumpy galactic disk. Similar asymmetries appear in JWST observations of NGC 7469 (Armus et al. 2023), motivating a closer investigation into the physical mechanisms behind these features.

Methods

- We perform 3D simulations using the GPU-accelerated special relativistic hydrodynamic (SRHD)-adaptive mesh refinement (AMR) code **GAMER-SR** (Tseng et al. 2021).
- The galaxy disk is modeled as a clumpy, multiphase ISM, with individual clumps ~20 pc in size.
- AGN feedback is modeled by injecting an **isotropic, ultra-fast wind** at the galactic center, following Costa et al. (2020).
- The simulation runs for a total of **4 Myr**, capturing both early and intermediate stages of bubble evolution.
- To study observability, we generate **synthetic spectra** using **TRIDENT** (Hummels et al. 2017), with resolution similar to HST.

Results

- Simulations show a **strong asymmetry in bubble formation** during the early stages.
- One lobe expands rapidly, while the other is slowed by interaction with dense clumps in the galactic disk.
- The peak mass outflow rate reaches 8 M_{\odot}/yr , consistent with values

Figure. 1 The slices of density at t=0.06, 0.1, 0.32 My respectively. The asymmetry of the bubbles can be seen in the early stage.

Figure. 2 The phase diagram of the galaxy at t = 0.1 Myr shows the region where gas exhibits properties similar to ionized coronal lines, highlighted by the orange rectangle.

observed in NGC 7469.

- After selecting gas with $\rho > 10^{-25}$ g/cm³ and T > 10⁵ K (coronal-line conditions), the velocity asymmetry persists.
- Phase diagrams reveal that the fast, hot gas lies outside standard CGM detection regions (Tumlinson et al. 2017), which may explain why it's difficult to observe in optical/IR.

Discussion

Mock Spectra

[NeV] mock spectra from TRIDENT show clear velocity asymmetry, but the measured velocity of the **extended component is only** ~**74 km/s**, far below the simulation's intrinsic speeds (up to 8000 km/s). This mismatch occurs because TRIDENT detects cooler, denser gas, while the hot, fast outflows are too diffuse to contribute significantly to optical/IR emission. Reducing the disk density could enhance spectral visibility by allowing more high-velocity gas to cool and emit.

Cooling

Radiative cooling is neglected because cooling timescales exceed the 4 Myr simulation duration. Hot outflows (T > 10^7 K) cool on Gyr timescales, and even gas at 10^5 – 10^6 K has a median cooling time of 11 Myr.

The cooler phase (T $\approx 10^5$ K) cools faster (~100 Myr) but plays a minor role

in driving the outflow. These values confirm that cooling is dynamically negligible, supporting the adiabatic approximation.

Figure. 3 The profile of radial velocity at different time along z-axis. The left panel is the whole simulation. The right panel is after selection for coronal lines.

Quantity	NGC7469	Simulation
Eddington Ratio	0.3	0.1
Radius of Ring (kpc)	0.58	0.5
Mass Outflow Rate(M [⊙] /yr)	4	8
V_max (km/s)	1700	3000
$\Delta_{V_{max}}$ (km/s)	700	80

Table. 1 Comparison with NGC 7469. Simulation values of V_max and ΔV_max are measured after coronal-line selection (Fig. 3, right panel), representing the peak outflow speed and the velocity asymmetry between two sides.

Figure. 4 Mock spectra of the galaxy at t=0.03,0.1, and 0.3 Myr, generated using TRIDENT. At 0.1 and 0.3 Myr, an extended component appears at longer wavelengths. The red vertical line marks the NeV IR emission at 243180Å.

References

Armus et al. (2023). ApJ, 942(2), L37. Tseng et al. (2021).MNRAS, 504(3), 3298-3315. Costa et al. (2020). MNRAS, 497(4), 5229-5255. Hummels, C. B. et al.(2017). ApJ, 847(1), 59. Tumlinson et al. (2017). Annual Review of A&A 2017