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* Signal recovery vs. downstream model performances
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Denoiser-based GW processing worktlow

e | ow-latency GW analysis is important in
Strain Data
feature extractor l

MMA
e Afoundation mode Denoiser (Foundation model)

* | everage the complexity of

downstream models l ‘

e |n this work, we want to know:

* The relationship between signal

recovery and the performance of

e Can the denoiser improve the

downstream tasks (detection, PE, etc)?

* |n the deep learning framework of GW
analysis, the denoiser can be seen as a
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The denoiser model

o A self-supervised denoiser to extract non-Gaussian features

e The NN itself is not optimized
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Dataset generation

e H1 and L1 O3b data as backgrouna

® Detection:
* Single detector 2s data (H1 or L1)
e \Whitened
® train: 81920, val: 4096 samples
e testing: 512 per SNRin [5, 40]
o b=
e Two-detector 2s data (H1L1)
e \Whitened
* train: 40960, test: 4096 samples
e testing: 512 per SNR in [5, 40]

approx. for BBH

SEOBNRV4_opt

approx. for BHNS

SEOBNRv4_opt

approx. for BNS TaylorT4
MBH [3, 75] M
MN|S [1.4,3] M,
q = my/m, [1, 10]
RA [0, 27]
dec [— /2, /2]
W [0, 27]
Popt [5, 301, [10, 35],[10, 40]
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Signal recovery vs. Detection

e Use overlap to quantity signal recovery:
up
V(R [)A/(s]s)
e The model can make confident predictions when @ > 0.2 for BBH and NSBH, and 0.1 for BNS.
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Signal recovery vs. PE

® | 0ss decreased as overlap
increasea

e Overall performance is not
good

® Random Sky ‘Ocation fOr the ' 0 O.ZM‘ 0.4 O0.6I . 1 ' 0 o 04 o0 . . ' . 02 04 0.6 0.8
Inimum Overlap Minimum Overlap
injection and two-detector
input made the result hard to

Interpret

!Lmam

0.2 0.4 : : :
Minimum Overlap Minimum Overlap Minimum Overlap

10



\

A

(!
11}

2.0 1.0 -
1.5 081
0.6 -
1.0
0.4 -
0.5 0.21 J J ‘Ag
- 0ol 44
1 L | |
O
2.0 =
LLl Ql'o-
O

HM .

\

v | ©
Y 1520 g 0
c 8 3 o6
L 10 Y
1 = B
-0.5% .goz- ‘ kh‘k kk
1 EnpY
ooé = oo{ HVBDDBBD< 4
T l _Q | |
<
1.0 1.0 -
0.8

BNS

| \ H“““LLHMJLUM

0.01 474" <
5




Detection performance w/wo denoiser

* |nsignificant improvement with denoiser

* Poor denoising degrades models’ performance

[,
Q
©
-
V
o
}_

w_denoiser

recall: 0.948
precision: 0.979
F1-score: 0.963
accuracy: 0.964

Predicted Label

BBH confusion matrix

True Label

wo_denoiser

recall: 0.954
precision: 0.959
F1l-score: 0.957
accuracy: 0.957

Predicted Label
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Detection performance w/wo denoiser

* |nsignificant improvement with denoiser

* Poor denoising degrades models’ performance
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Detection performance w/wo denoiser

* |nsignificant improvement with denoiser

* Poor denoising degrades models’ performance
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Detection performance w/wo denoiser

* |nsignificant improvement with denoiser

* Poor denoising degrades models’ performance
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PE performance w/wo denoiser

e Similar trend to the detection performance
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oummary

e For the detection task, a deep learning model only requires a small portion of the GW features
e Averysimple NN already does the job well

e For PE tasks, the prediction error decreases as more GW features are used
 Need to rethink our current method for more specific investigations

e Currently, the use of a denoiser has little improvement on the downstream task performance
e Using an encoder as the foundation model could be more efticient

® Future works:

® Focusing on extracting inspiral features

e Design more specific methods to test PE
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