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Denoiser-based GW processing workflow
• Low-latency GW analysis is important in 

MMA 

• In the deep learning framework of GW 
analysis, the denoiser can be seen as a 
feature extractor 
• A foundation model 
• Leverage the complexity of 

downstream models 

• In this work, we want to know: 
• The relationship between signal 

recovery and the performance of 
downstream tasks 

• Can the denoiser improve the 
downstream tasks (detection, PE, etc)? 3

Strain Data

Denoiser (Foundation model)

Detection

Parameter est.

Localization



Method
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The denoiser model
• A self-supervised denoiser to extract non-Gaussian features 

• The NN itself is not optimized
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Dataset generation
• H1 and L1 O3b data as background  
• Detection: 

• Single detector 2s data (H1 or L1) 
• Whitened 
• train: 81920, val: 4096 samples 
• testing: 512 per SNR in [5, 40] 

• PE: 
• Two-detector 2s data (H1L1) 
• Whitened 
• train: 40960, test: 4096 samples 
• testing: 512 per SNR in [5, 40]

6

mBH
mNS

q = m1/m2

[3, 75] M⊙

[1.4, 3] M⊙

[1, 10]

RA [0, 2π]

ρopt [5, 30], [10, 35], [10, 40]

dec [−π/2, π/2]

ψ [0, 2π]

approx. for BBH

approx. for BHNS

SEOBNRv4_opt

approx. for BNS TaylorT4

SEOBNRv4_opt



Detection 
model
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Signal recovery vs. Detection
• Use overlap to quantify signal recovery: 

 

• The model can make confident predictions when  for BBH and NSBH, and 0.1 for BNS.

𝒪 =
(h |s)

(h |h) (s |s)

𝒪 > 0.2
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Signal recovery vs. PE

• Loss decreased as overlap 
increased  

• Overall performance is not 
good 

• Random sky location for the 
injection and two-detector 
input made the result hard to 
interpret 
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Detection performance w/wo denoiser
• Insignificant improvement with denoiser 

• Poor denoising degrades models’ performance
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PE performance w/wo denoiser
• Similar trend to the detection performance
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Summary
• For the detection task, a deep learning model only requires a small portion of the GW features 

• A very simple NN already does the job well 

• For PE tasks, the prediction error decreases as more GW features are used 

• Need to rethink our current method for more specific investigations 

• Currently, the use of a denoiser has little improvement on the downstream task performance 

• Using an encoder as the foundation model could be more efficient 

• Future works: 

• Focusing on extracting inspiral features 

• Design more specific methods to test PE
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