Investigating Relations Between Denoised GW Structures and the Performance of ML-based GW Analysis

Yu-Chiung Lin and Albert Kong 2025 ASROC Annual Meeting 2025.05.17

Outline

- Introducion and Motivation
- Dataset generation and downstream model setups
- Signal recovery vs. downstream model performances
- Downstream performance with/without denoiser
- Discussion & Conclusion

stream model setups n model performances n/without denoiser

Denoiser-based GW processing workflow

- Low-latency GW analysis is important in MMA
- In the deep learning framework of GW analysis, the denoiser can be seen as a feature extractor
 - A foundation model
 - Leverage the complexity of downstream models
- In this work, we want to know:
 - The relationship between signal recovery and the performance of downstream tasks
 - Can the denoiser improve the downstream tasks (detection, PE, etc)?

Strain Data

Denoiser (Foundation model)

Detection

Parameter est.

Method

Y-C. Lin and A. Kong , PRD 111, 063520 (2025)

5

Dataset generation

- H1 and L1 O3b data as background
- Detection:
 - Single detector 2s data (H1 or L1)
 - Whitened
 - train: 81920, val: 4096 samples
 - testing: 512 per SNR in [5, 40]
- PE:
 - Two-detector 2s data (H1L1)
 - Whitened
 - train: 40960, test: 4096 samples
 - testing: 512 per SNR in [5, 40]

approx. for BBH	SEOBNRv4_opt
approx. for BHNS	SEOBNRv4_opt
approx. for BNS	TaylorT4
^m BH	[3, 75] <i>M</i> _☉
^m NS	[1.4, 3] <i>M</i> _☉
$q = m_1 / m_2$	[1, 10]
RA	$[0, 2\pi]$
dec	$[-\pi/2, \pi/2]$
Ψ	$[0, 2\pi]$
ρ _{opt}	[5, 30], [10, 35], [10, 40]

Input (8192 x 1)

Detection model

Conv1D (16,8)

Conv1D (32,8)

Conv1D (64,8)

Conv1D ReLU MaxPool1D (4,4) BatchNorm

Training: 50 epochs cross-entropy loss

Conv1D (128,4) Flatten Dense (64) / ReLU Dense (32) / ReLU Dense (1) / Sigmoid $p \in [0,1]$

Signal recovery vs. Detection

• Use overlap to quantify signal recovery:

 $(h \mid s)$ $\sqrt{(h \mid h)} \sqrt{(s \mid s)}$

0

• The model can make confident predictions when $\mathscr{O} > 0.2$ for BBH and NSBH, and 0.1 for BNS.

SNR

Signal recovery vs. PE

- Loss decreased as overlap increased
- Overall performance is not good
- Random sky location for the injection and two-detector input made the result hard to interpret

- Insignificant improvement with denoiser
- Poor denoising degrades models' performance

- Insignificant improvement with denoiser
- Poor denoising degrades models' performance

- Insignificant improvement with denoiser
- Poor denoising degrades models' performance

- Insignificant improvement with denoiser
- Poor denoising degrades models' performance

PE performance w/wo denoiser

• Similar trend to the detection performance

16

Summary

- For the detection task, a deep learning model only requires a small portion of the GW features A very simple NN already does the job well
- For PE tasks, the prediction error decreases as more GW features are used
 - Need to rethink our current method for more specific investigations
- Currently, the use of a denoiser has little improvement on the downstream task performance
 - Using an encoder as the foundation model could be more efficient
- Future works:
 - Focusing on extracting inspiral features
 - Design more specific methods to test PE

