DETERMINING THE MASS OF COSMIC DUST: THE SYSTEMATIC ERRORS INDUCED BY TEMPERATURE-DEPENDENT OPACITY

Lapo Fanciullo,¹

Jonathan Marshall,² Francisca Kemper³

National Chung Hsing University, Taiwan
Academia Sinica Institute of Astronomy and Astrophysics, Taiwan
Institute for Space Sciences (ICE), CSIC, Catalonia, Spain

ASROC 2025, National Formosa University, May 17th

CONTEXT AND MOTIVATION

INTERSTELLAR DUST

- Observed at FIR/submm/mm wavelengths: 50 µm – 1+ mm (large grains)
- Reprocesses 25-99% of stellar radiation in galaxies
- Traces all phases of interstellar gas
- Cosmic abundance evolution related to stellar evolution
- Dust Budget Crisis (Dust Budget Opportunity?)
 - Supernova contributions? Grain growth? Top-heavy initial mass function?
 - Dust masses needed to accurately test new models

SED FIT: THE MODIFIED BLACKBODY (MBB) ³

$$F_{\nu}(T) = \frac{1}{d^2} M \cdot \kappa(\lambda) \cdot B_{\nu}(T)$$

Power law (PL) opacity: $\kappa(\lambda) = \kappa_0 \left(\frac{\lambda}{\lambda_0}\right)^{-\beta}$

MBB SYSTEMATICS

Line-of-sight/beam temperature variations

Fitting a single-temperature SED results in:

- Underestimating β
- Overestimating T
- Underestimating M e.g., Shetty+09a,b

Insights from experimental opacity

FIR/submm opacities measured in the lab tend to be:

 Higher than in most models → overestimated dust M?

(Demyk+17, 22; Fanciullo+20)

- Temperature-dependent, especially at long wavelengths
- Not a simple power law

7

9

FIT RESULTS (I): FIXED β

7 bands (Herschel, SCUBA-2); λ range: 70 – 850 μ m

FIT RESULTS (II): FREE β

7 bands (Herschel, SCUBA-2); λ range: 70 – 850 μ m

FIT RESULTS (II): FREE β

7 bands (Herschel, SCUBA-2); λ range: 70 – 850 μ m

- The systematics on M_{fit} are no longer Tdependent, but still not 0
- Positive bias on β (for our choice of opacity)
- Why? Likely answer: non-power-law opacity

"Short wavelength" range: 70 – 250 μ m; "long wavelength" range = 160 – 500 μ m

Different wavelength ranges "see" different optical properties

- κ curvature can become more/less evident depending on the range chosen
 - e.g., ~200-µm "bump"

"Short wavelength" range: 70 – 250 μ m; "long wavelength" range = 160 – 500 μ m

Different wavelength ranges "see" different optical properties

- к curvature can become more/less evident depending on the range chosen
 - e.g., ~200-µm "bump"

"Short wavelength" range: 70 – 250 μ m; "long wavelength" range = 160 – 500 μ m

Different wavelength ranges "see" different optical properties

- к curvature can become more/less evident depending on the range chosen
 - e.g., ~200-µm "bump"

"Short wavelength" range: 70 – 250 μ m; "long wavelength" range = 160 – 500 μ m

Different wavelength ranges "see" different optical properties

- κ curvature can become more/less evident depending on the range chosen
 - e.g., ~200-µm "bump"

"Short wavelength" range: 70 – 250 μ m; "long wavelength" range = 160 – 500 μ m

Different wavelength ranges "see" different optical properties

- κ curvature can become more/less evident depending on the range chosen
 - e.g., ~200-µm "bump"

FIT RESULTS (III): FREE β , NON-PL OPACITY ¹⁸

M_{fit} results from free- β fit

Short wavelength fit Long wavelength fit 2.5 2.5 2.0 2.0 V^{LI} - 1.5 $M_{\rm fit}/M_{\rm in}$ 1.5 1.0 1.0 $f_{PDR} = 0$ 0.5 0.5 $f_{PDR} = 0.1$ $f_{PDR} = 1$ 0.0 + 0.0 -Ò 20 60 80 Ó 20 60 80 40 100 40 100 T_{min} (K) T_{min} (K)

REDSHIFT EFFECTS (FIXED β)

•
$$T_{min} = 40 \text{ K}$$

- At each redshift, 4 bands chosen from Herschel+SCUBA-2+ALMA
- Wavelength range determined by combination of band choice and redshift
- Result: M_{fit} systematics depend on z

REDSHIFT EFFECTS (FREE β)

•
$$T_{min} = 40 \text{ K}$$

- At each redshift, 4 bands chosen from Herschel+SCUBA-2+ALMA
- Wavelength range determined by combination of band choice and redshift
- Result: M_{fit} systematics depend on z

CONCLUSIONS

- Dust M determination from MBB fits is biased by non-power-law dust opacity, temperature-dependent opacity
- Effects quantified for the first time (?)
 - Fixed-β fits: temperature-dependent bias
 - Free- β fits: bias ~independent of temperature but more sensitive to wavelength sampling
- Specific results depend on chemical composition!
- Need to take realistic, T-dependent opacity into account when comparing systems at:
 - different temperatures
 - different (rest-frame) wavelength sampling > different z

FUTURE WORK

- Effect of alternative dust compositions
- Tool for estimating MBB bias given dust composition
- To what extent do T-dependent properties contribute to the T- β anticorrelation?
- Improvements to synthetic observation model
 - Optically thick emission?
 - Clumpy galaxies?
- Improvements to fitting model
 - Two-temperature fit

THANK YOU FOR YOUR ATTENTION!