## Inferring Dense Confined Circumstellar **Medium around Supernova Progenitors via Long-term Hydrodynamical Evolution**

## Tomoki Matsuoka (ASIAA)

Keiichi Maeda (Kyoto Univ.) Ke-Jung Chen (ASIAA)



from Matsuoka et al., submitted to ApJL (arXiv: 2504.14255)

SN ejecta

### ambient; circumstellar medium (CSM)









# **Self-similar solutions of SN hydrodynamics**

Sedov (1959)

a point-source explosion of a massless material into ambient medium

 Application: Supernova remnant ( $t \gtrsim \text{tens of years}$ )



arXiv: 2504.14255







# Are these self-similar solutions applicable?

### NO. CSM density profile is actually complicated (at least two component).



### **Q.** What happens in SN-CSM interaction system if there is an additional dense CSM component near the star?

arXiv: 2504.14255





# Start from numerical experiment.

- Numerically simulating 1D nonradiative hydrodynamics of SN-CSM interaction
  - open code SNEC (Morozova+15)
  - setup of an SN II progenitor with  $M_{\rm ej} = 12 M_{\odot}, E = 10^{51} \, {\rm erg}$
  - put dense CSM near the progenitor ( $r < 10^{15}$  cm) with different corresponding mass-loss rates of  $\dot{M} = 10^{-3}, 10^{-4}, 10^{-5} M_{\odot} \text{ yr}^{-1}$
- Compare the evolutions and profiles between models with and without dense CSM

arXiv: 2504.14255





## Let me show you snapshots...

### Blue: SN ejecta, Red: dense CSM, Black: tenuous wind

### Without dense CSM



### **Contact me if you wanna see animations.**

#### arXiv: 2504.14255

With dense CSM



# Who is driving the expansion?

•  $t \leq 10 \,\mathrm{days}$ SN shock sweeps dense CSM and the shell is pushed by SN ejecta

### Blue: SN ejecta, Red: dense CSM, **Black: tenuous wind**





# Who is driving the expansion?

- $t \leq 10 \,\mathrm{days}$ SN shock sweeps dense CSM and the shell is pushed by SN ejecta
- $t \gtrsim 10 \,\mathrm{days}$ SN shock sweeps tenous wind and the shell is pushed by dense CSM

### The dense CSM drives the expansion of the shocked shell. **NOT the SN ejecta.**

### Blue: SN ejecta, Red: dense CSM, **Black: tenuous wind**





## dense CSM material is flatter than SN ejecta

The density gradients of

• **SN ejecta** ( $t \leq 10$  days)  $\rho \propto r^{-12}$ , as expected for SN II in Matzner+99

### Blue: SN ejecta, Red: dense CSM, **Black: tenuous wind**







## dense CSM material is flatter than SN ejecta

The density gradients of

- **SN ejecta** ( $t \leq 10$  days)  $\rho \propto r^{-12}$ , as expected for SN II in Matzner+99
- dense CSM ( $t \gtrsim 10$  days)  $\rho \propto r^{-5.5}$ , even flatter than the limiting case of SN ejecta ( $7 \leq n \leq 12$ )

### The shell-pushing material (dense CSM) is actually flatter than SN ejecta.

arXiv: 2504.14255

### Blue: SN ejecta, Red: dense CSM, **Black: tenuous wind**









### 2025 ASROC Annual Meeting 18/May/2025

10



arXiv: 2504.14255









arXiv: 2504.14255





2025 ASROC Annual Meeting 18/May/2025

13



2025 ASROC Annual Meeting 18/May/2025

14









# Influence on forward shock velocity V<sub>sh</sub>



#### arXiv: 2504.14255

2025 ASROC Annual Meeting 18/May/2025

17

## **Observable signature: 5 GHz radio emission**



#### arXiv: 2504.14255











# **Observable signature: 5 GHz radio emission**



#### arXiv: 2504.14255











# **Observable signature: 5 GHz radio emission**



#### arXiv: 2504.14255

![](_page_19_Picture_4.jpeg)

![](_page_19_Picture_5.jpeg)

![](_page_19_Picture_6.jpeg)

![](_page_19_Picture_7.jpeg)

![](_page_19_Picture_8.jpeg)

# Summary

- We have **Tested the influence of dense CSM** near the progenitor on the subsequent evolution
- Clear deviations from self-similar solution:
  - *flatter density gradient* of pushing material (Not ejecta, but dense CSM)
  - fast deceleration of  $V_{\rm sh}$

 $\rightarrow$  fast decay of optically thin radio emission

• *increase in*  $V_{\rm sh}$  by a factor *a few years after* the explosion

 $\rightarrow$  rebrightening of radio emission

• Next objective: Derive (semi-)analytic formulae of the profiles and shock evolutions (with consideration of whether we can do that).

![](_page_20_Figure_9.jpeg)

See TM+25a (arXiv:2504.14255)

![](_page_20_Picture_12.jpeg)

![](_page_20_Picture_13.jpeg)

#### arXiv: 2504.14255

![](_page_21_Picture_2.jpeg)

# Density profile in mass coordinates

![](_page_22_Figure_1.jpeg)

arXiv: 2504.14255

![](_page_22_Picture_4.jpeg)

# **Density profile evolution**

![](_page_23_Figure_1.jpeg)

#### arXiv: 2504.14255

![](_page_23_Picture_4.jpeg)

# Velocity profile evolution

![](_page_24_Figure_1.jpeg)

#### arXiv: 2504.14255

![](_page_24_Picture_4.jpeg)

# Ram pressure profile

![](_page_25_Figure_1.jpeg)

#### arXiv: 2504.14255

![](_page_25_Picture_5.jpeg)

## **Temperature profile evolution**

![](_page_26_Figure_1.jpeg)

#### arXiv: 2504.14255

![](_page_26_Picture_4.jpeg)