

Gravitational wave emissions from Core-Collapse Supernovae

Kuo-Chuan Pan (潘國全)

Department of Physics & Institute of Astronomy National Tsing Hua University, Hsinchu, Taiwan

2nd OMU-NTHU joint meeting @ Hsinchu 02/08/2025

Introduction & Motivations

- We have entered the gravitational wave astrophysics era (a whole new way to **HEAR** the Universe)
- There are more than 281 GW events detected. All of them are Compact Binary Coalescences (CBC)
- Detection of GW from Core-Collapse Supernova (CCSN) is the next milestone

O1+O2+O3 = 90, $O4a^* = 81$, $O4b^* = 105$, $O4c^* = 5$, Total = 281 * O4a, O4b, and O4c entries are preliminary candidates found online. 280 260 9 240 did 220 200 **O3a O3b O4a** 02 **O4c O4b** 01 180 160 140 120 100 80 60 40 20 600 700 100 200 300 500 800 900 1000 1100 400 1200 1300 1400 Time (Days) LIGO-G2302098(8c109907), updated on 6 February, 2025 Credit: LIGO-Virgo-KAGRA Collaboration

Credit: LIGO-Virgo-KAGRA

Introduction & Motivations

- Core-collapse supernovae (CCSNe) are energetic stellar explosions from the deaths of massive stars (M > 8 Msun)
- Very luminous (1 foe); as bright as a galaxy.
- Birthplaces of neutron stars and stellar mass black holes
- Chemical enrichment in galaxies
- Observe more than 1 SN per data —> Data-driven science (ML / AI)
- Connections to Gamma-Ray Bursts (GRB) or Fast Radio Bursts (FRB).

Multi-messenger Signals from CCSNe

- CCSNe are ideal multi-messenger (MM) sources
 - Neutrino (~10⁵³ erg)
 - Kinetic (~10⁵¹ erg)
 - Radiation (~10⁴⁹ erg)
 - Gravitational Waves (~10⁴⁷ erg)

 Co-detection from multiple messengers could provide meaningful constraints on the supernova engine(s) and nuclear physics

Kharusi et al. (2021)

Motivation: Several fundamental questions

LIGO-Virgo-KAGRA Black Holes LIGO-Virgo-KAGRA Neutron Stars EM Black Holes EM Neutron Stars

The computational explosive astrophysics group in IoA, NTHU

- FLASH Code (1D/2D/3D)
- IDSA for neutrino transport (Pan et al. 2016, 2019)
- Effective general relativity (Pan et al. 2017, 2018, 2021)
- Nuclear EoS from stellar collapse.org
- GPU acceleration (Pan et al. 2021)
- Code comparison studies (Pan et al. 2019, Cabezon et al. 2018)
- GW emission modules (Pan et al. 2018, 2021)
- Binary progenitors (Wang & Pan 2024)
- MHD enabled (Li et al. 2025, in prep.)
- State-of-the-art resolutions (using Taiwania 3)
- ... and more ...

user: pan Fri Jul 12 17:20:50 2024

The Proto-Neutron Star

- SASI could induce rotation
- Accretion flow perturb the PNS
- PNS surface convection

- PNS inner core convection
- All these non-spherical variation cause GW emis

Spectrograms

- Frequency-time evolution
- red: PNS surface oscillation (g-mode)
- white: the SASI signal
- Frequencies ranged from hundred hertz to kilohertz
- GW "Sounds"

Extreme CCSN events

- Gravitational wave calculations from Multi-D CCSN simulations suggest that only galactic normal CCSNe could be detected by the current LVK network
- Extreme conditions such as fast-rotating or magnetized CCSN are more likely to be detected

Szczepańczyk et al. (2024)

Chen et al. (+KCP). in prep.

Magnetized CCSN Zoo

BH formation

0

Mono-polar Jet

200 km

Neutrino-driven explosion

Bipolar Jet

s40 Shock dynamics (rotating models)

- Non-magnetized models all form a BH
- Strong B-field could trigger explosions in non-rotating models
- Neutrino-driven explosions are still possible in magnetized models
- Monopolar jets or bipolar jets could be launched in rotating models

Multi-messenger Signals

BH formation

Monopolar Jet

Neutrino-driven explosion

Preliminary

Bipolar Jet

Multi-messenger Signals

- BH formation models show strong kHz signals
- MHD jet models have stronger GW emissions
- Fast rotating models show strong low frequency features

Non-rotating models

 $B_0 = 10^{11}$

Searches for GWs from CCSNe

Chao et al., (+ K.-C. Pan) 2022 ApJ, 939, 13 (with Daw-Wei Wang)

- 1824 waveforms from Richers et al. (2017)
- CNN models to identify the core rotational rates, length scale, and nuclear EoS
- Using [-10 ms, 6 ms] waveforms, 95% (93%) accuracy on identifying the rotational rates (length scale)
- Using [-10 ms, 54 ms], 96% accuracy on identifying the EoS groups
- Additional 84 forms from Pan et al. with Transfer learning is possible

Searches for GWs from CCSNe

Chen et al., (+ K.-C. Pan) in preparation (with Albert Kong, Yi Yang)

- When applying for real data, glitches could be misclassified as CCSN signals
- We train NN models to identify glitches and CCSN signals (using O3b data; 2020.01-2020.02): CCSNet
- **31** state-of-the-art 3D CCSN waveforms
- Real O3b glitches identified by the Omicron pipeline
- Parameters: orientations (RA/Dec), Sky localization (RA/Dec), Polarization Phase & Time shift

be

Data

Conclusions & Future work

- The main CCSN GW features are from the surface oscillations of the proto-neutron star, but depending on the dynamics evolution and microphysics, there are additional features, such as SASI, MHD monopolar/bipolar jets, low T/W instabilities, ...etc.
- We developed Machine learning techniques to (1) estimate rotational parameters and EoS groups using 2D waveforms (2) classify CCSN signals and glitches (CCSNet)
- Our results show that Galactic CCSNe are more likely to be detected, except a few exceptions with fast rotation (maybe also MHD cases)
- Future GW and MMA detections of a nearby CCSN are important for examining the CCSN's physics.

Acknowledgement

NATIONAL TSING HUA UNIVERSITY

National Center for Theoretical Sciences

NSTC 國家科學及技術委員會 National Science and Technology Council

NAR Labs 財團法人國家實驗研究院 國家高速網路與計算中心 National Center for High-performance Computing

Magnetized CCSN

Failed supernovae

NCTS Theoretical Physics Symposium @ NSYSU 01/15/2025

Butterfly-pattern neutrino-driven explosion

Magnetized CCSN

Bipolar explosion

NCTS Theoretical Physics Symposium @ NSYSU 01/15/2025

Kuo-Chuan Pan **21**

Monopolar explosion

Shock dynamics (non-rotating models)

- Non-magnetized models and weak fields models form BH at the end of simulations
- Magnetic fields assist in explosion
- Once a model explodes, BH formation will be delayed due to less accretion

Li et al. (including K.C Pan), in prep.

Shock dynamics (rotating models)

- Without magnetic fields, rotation tends to suppress explosion (Pajkos et al. 2019)
- If magnetic fields are present, rotation could assist in the explosion! (opposite)
- The threshold is under investigation
- Jets could be launched in exploding models

Li et al. (including K.C Pan), in prep.

Explosion time vs. morphology

- Neutrino-driven explosion models are less sensitive to explosion times
- Bipolar jet models have shorter explosion times
- Monopolar jet models tend to have slightly longer explosion times

NCTS Theoretical Physics Symposium @ NSYSU 01/15/2025

B-field

