Measurement of the Variation of Electron-to-Proton Mass Ratio Using Ultracold Molecules Produced from Laser-Cooled Atoms

Outline

- Introduction
- Feshbach resonance
- Ultracold molecules
- Efimov state
- Outlook

Outline

- Introduction
- Feshbach resonance
- Ultracold molecules
- Efimov state
- Outlook

My "move"

What is ultracold quantum gas?

Laser cooling !

Further bringing down the temperature by another factor of 10^{-3} ...

Bose-Einstein Condensate!

$$i\hbar \frac{\partial \Psi(\vec{r},t)}{\partial t} = \left[-\frac{\hbar^2}{2m} \nabla^2 + V_{ext}(\vec{r}) + \frac{4\pi\hbar^2 a}{m} |\Psi(\vec{r},t)|^2 \right] \Psi(\vec{r},t)$$

Anderson et al., Science, 269 198 (1995)

Outline

- Introduction
- Feshbach resonance
- Ultracold molecules
- Efimov state
- Outlook

What is the scattering length *a* ?

The "a" characterises the two-body collision.

$$\left(-\frac{\hbar^2}{2\mu}\left(\frac{\partial^2}{\partial r^2} + \frac{2}{r}\frac{\partial}{\partial r}\right) + \frac{\hat{L}^2}{2\mu r^2} + U(r)\right)\psi(\vec{r}) = E\psi(\vec{r}) \qquad \psi(\vec{r}) = \exp(ikz) + \frac{f(\theta)}{r}\exp(ikr) \qquad f(\theta) \to -a$$

Interatomic Separation

What will happen if there are other internal states?

Interatomic Separation

What will happen if there are other internal states?

Interatomic Separation

 \rightarrow We can use the bias magnetic field to shift the hyperfine state 2!

Technical problem: magnetic field was used for confinement

Optical trap was developed to make magnetic field "free"

First observation of Feshbach resonance

"Observation of Feshbach resonances in a Bose-Einstein condensate." SI *et al.*, Nature **392**, 151 (1998).

BCS-BEC crossover was realized using Fermionic atoms!

14

Outline

- Introduction
- Feshbach resonance
- Ultracold molecules
- Efimov state
- Outlook

Review of Modern Physics, 82, 1225 (2010)

SI et al., Phys. Rev. Lett. 93, 183201 (2004)

• Detect molecules with REMPI (Resonant-Enhanced MultiPhoton Ionization)

Ionization spectroscopy of the $(3)^{1}\Sigma^{+}$ state

Production of ultracold ro-vibrational ground sate molecules via STIRAP

21

Why molecule spectroscopy for electron-to-proton mass ratio $\mu = \frac{m_e}{M_p}$?

Suppose $m_e = const$, while M_p is changing.

Enhanced sensitivity for alkali-alkali molecule?

STIRAP transfer to the target state

Obtained signal for $m_F = 0$

S/N \sim 500 (c.f. Number of molecules used \sim 10⁶)

Good News: we broke the world record set by $SF_6!$

Outline

- Introduction
- Feshbach resonance
- Ultracold molecules
- Efimov state
- Outlook

Efimov trimers

$$H' = \frac{p_R^2}{2\mu} - \frac{\left(s_0^2 + 1/4\right)\hbar^2}{2\mu R^2} + V(R)$$

$$\frac{E_{n+1}}{E_n} = \exp\left(-\frac{2\pi}{s_0}\right) \sim \left(\frac{1}{22.7}\right)^2 \sim \frac{1}{515}$$

Francesca Ferlaino and Rudolf Grimm, *Physics* **3**, 9 (2010).

Efimov trimers for hetero-nuclear systems

Shih-Kuang Tung *et al.*, Phys. Rev. Lett. 113, 240402 (2014) Expected scaling (4.9) was observed

We observed Efimov resonance between ⁸⁷Rb and ⁴¹K⁸⁷Rb

K. Kato, and SI, PRL. 118, 163401 (2017). ³²

Outline

- Introduction
- Feshbach resonance
- Ultracold molecules
- Efimov state
- Outlook

Current interest: mixture in a box trap

Quench dynamics of dual BEC

Quantum simulation of nucleus

C班:冷却原子実験 GL: 堀越宗一(大阪公立大学) 井上慎(大阪公大), 板垣直之(大阪公大), 堀内渉(大阪公大), 加藤宏平(大阪公大) Injecting Dy atoms in an optical trap = protons and neutrons in a shell potential Team leader : Munekazu Horikoshi (Concept) Quantum simulation of nuclear physics Precision measurement We control Number of particles spin composition interaction We need to energy separation simulate and measure energy precisely nucleus! Nucleons have large magnetic moment shell potential \rightarrow Let's use Dy atoms!

Conclusion and Outlook

We have been exploring fundamental physics using ultracold atoms and molecules.

- Feshbach resonances
- production of rovibrational ground state polar molecules
- heteronuclear efimov state
- stability of me/Mp
- (degenerate mixtures in a box potential?)

 $21 \mu m \times 206 \mu m$

