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Bosons

BEC
phase transition at TC

Fermions

Fermi sea of atoms
gradually emerges for T<TF

!"

Further lower
temperature

What is ultracold quantum gas?



Laser cooling！

? ?

300 K 300 𝜇K
10!"

Further bringing down the temperature
by another factor of 10!"...



Anderson et al.,
Science, 
269 198 (1995) 

Bose-Einstein Condensate!
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What is the scattering length 𝑎 ? 

colliding atoms

Interfere!
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The "𝑎" characterises the two-body collision.

𝑓 𝜃 → −𝑎



H. Feshbach

What will happen if there are other internal states?



H. Feshbach

→ We can use the bias magnetic field to shift the hyperfine state 2!

What will happen if there are other internal states?



Technical problem: magnetic field
was used for confinement

Optical trap was developed to make 
magnetic field "free"



"Observation of Feshbach resonances in a Bose-Einstein condensate."
SI et al., Nature 392, 151 (1998).

First observation of Feshbach resonance



BCS ← → BEC

14

BCS-BEC crossover was realized using Fermionic atoms!

W. Zwerger (Editor)
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Review of Modern
Physics, 82, 1225 (2010)

scattering
length a

Binding
energy 𝐸#

Feshbach resonance and molecules

repulsive

attra
ctive

on resonance

Na

Na K

Rb

polar molecule!



SI et al., Phys. Rev. Lett. 93, 183201 (2004)

First observation of heteronuclear
Feshbach reosnance

Rb

K
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Feshbach molecule vs "real" molecule

degenerate mixture Feshbach molecule ground state

Feshbach
resonance

T~100nK

Feshbach molecule

Ground state molecule
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Excited
state
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dipole moment



Our setup for molecular spectroscopy

• Dual species MOT (K, Rb)
• Photoassociation

• Spectroscopy
• Detect molecules with REMPI (Resonant-Enhanced MultiPhoton Ionization)

Ionization laser

MCP      

Photoassociation
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Ionization spectroscopy of the (3)1S+ state
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IR (Dye)

532nm
(Pump for dye)

X1S+

(3)1S+

KRb+
• Ionize by two pulses: IR(~870nm)+532nm
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Production of ultracold ro-vibrational ground sate 
molecules via STIRAP
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(3)1S+, v’’=41, J’’=1

21K. Aikawa, ... and SI, PRL 105, 203001 (2010)
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Why molecule spectroscopy for
electron-to-proton mass ratio 𝜇 = !!

""
?

Large m Small m
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Electron determines
potential

Suppose 𝑚) = 𝑐𝑜𝑛𝑠𝑡, while 𝑀* is changing.

𝛿𝜔
𝜔 =

1
2
𝛿𝜇
𝜇



Prof. DeMille's proposal
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Enhanced sensitivity for alkali-alkali molecule?

singlet potential = deep
→sensitive to 

triplet potential = shallow
→insensitive

Measure microwave transition
between singlet and triplet
bound state!



X1Σ+ a3Σ+

Internuclear separation(Å)
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41K87Rb

vX=80⇔ va=8

vX=86⇔ va=16

vX=91⇔ va=22 Dw ~2.4GHz
S~3.5THz
Mixing ~9%

Dw ~1GHz
S~9.5THz
Mixing ~2%

Dw ~1GHz
S~17.9THz
Mixing ~10-5 %
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Large sensitivity
with reasonable
transition moment

→use this!
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107~108 Rb atoms
107~108 K atoms
in a dual-species
MOT

104~105 KRb molecules
in many (~102) states

102~103 KRb molecules
in X1S+,v=86, F=0

temperature ~ 100µK, 
repetition rate ~ 10Hz

STIRAP transfer to the target state
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FWHM〜50Hz

Obtained signal for mF = 0

634 963 783.458±0.093 Hz

Average of 5000 sweeps
(6 hours)

634 963 781.564±0.094 Hz

Zeeman shift 
compensation

S/N ~ 500 (c.f. Number of molecules used ~ 106)
26



Good News: we broke the world record set by SF6!

A. Shelkovnikov et al., 
PRL 100, 150801(2008)

1
µ
∂µ
∂t

= 3.8± 5.6( )×10−14 / year

1
µ
∂µ
∂t

= 0.30±1.00Stat ± 0.16Sys( )×10−14 / year

1.0/5.6

J. Kobayashi, A. Ogino, and SI,
Nature Comm. 10, 3771 (2019)
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Francesca Ferlaino and Rudolf Grimm, 
Physics 3, 9 (2010).

Efimov trimers

Figure 4.1: The three sets of Jacobi coordinates describing the relative positions of three identical particles.

Choosing one set of Jacobi coordinates, the time-independent three-body wave function satisfies the free
Schrödinger equation at total energy E = ~2k2/m:

(�r2
r12

�r2
⇢12,3

� k2) = 0 (4.15)

along with the Bethe-Peierls boundary condition Eq. (4.7) for all pairs of bosons. Because of the bosonic
exchange symmetry, the wave function  can be decomposed as follows:

 = �(~r12, ~⇢12,3) + �(~r23, ~⇢23,1) + �(~r31, ~⇢31,2) (4.16)

where the function � (known as Faddeev component [52, 48]) satisfies the equation:

(�r2
r
�r2

⇢
� k2)�(~r, ~⇢) = 0 (4.17)

Applying the Bethe-Peierls boundary condition Eq. (4.7) for the pair (1,2) to Eq. (4.16), one obtains:
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where ~r ⌘ ~r12 and ~⇢ ⌘ ~⇢12,3. From the bosonic exchange symmetry, the same equation is obtained by applying
the Bethe-Peierls boundary condition for the other two pairs. In the right-hand side of Eq. (4.18), only the
first term remains when r ! 0, because �(~r, ~⇢) diverges for r ! 0 but is finite elsewhere. The function � can
be expanded in partial waves, which can be shown to be independent in the zero-range theory. The Efimov
e↵ect for bosons occurs in the partial-wave channel with total angular momentum L = 0 . In this channel, � is
independent of the directions of ~r and ~⇢ and can be written as

�(~r, ~⇢) =
�0(r, ⇢)

r⇢
. (4.19)

�0 is finite for r ! 0, consistent with the divergence of �, but must satisfy:

�0(r, ⇢) ���!
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0 (4.20)

to keep � finite in this limit. Inserting Eq. (4.19) into Eqs. (4.17) and (4.18) yields the equation
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One can finally perform a transformation of the coordinates (r, ⇢) to the polar coordinates (R,↵) known as
hyper-spherical coordinates [53, 48]:

r = R sin↵ (4.22)

⇢ = R cos↵ (4.23)
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368 E. Braaten, H.-W. Hammer / Physics Reports 428 (2006) 259 –390
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Fig. 53. Discrete scaling factor e!/s0 for two particles of equal mass m1 =m2 as a function of the mass ratio m1/m3 for the cases in which two pairs
have large scattering lengths. If a23 and a31 are large, particles 1 and 2 can be either identical bosons or distinguishable particles (solid line) or else
identical fermions (dash-dotted line). If a12 and a31 (or a12 and a23) are large, particles 1 and 2 must be distinguishable particles (dashed line).

subsystem angular momentum. However, as will be discussed in Section 9.3, there is an Efimov effect associated with
hyperangular channels with nonzero subsystem angular momentum if the mass ratio m3/m1 exceeds a critical value.

The discrete scaling factor for the cases in which only two pairs have large scattering lengths are illustrated in Fig.
53. We consider only the special case in which particles 1 and 2 have the same masses m1 =m2, and we plot the discrete
scaling factor as a function of the mass ratio m1/m3. If the large scattering lengths are a23 and a31 and if particles 1
and 2 are either identical bosons or distinguishable, the discrete scaling factor is e!/s0 , where " = −s2

0 is a negative
solution to Eq. (392). As m1/m3 increases from 0 to 1 to ∞, e!/s0 decreases monotonically from ∞ to 1986.1 to 1 as
shown in Fig. 53. The case in which particles 1 and 2 are identical fermions, for which the discrete scaling factor is
also shown in Fig. 53, is discussed in Section 9.3. If the large scattering lengths are either a12 and a31 or a12 and a23,
particles 1 and 2 must be distinguishable. The equation that determines the discrete scaling factor is Eq. (392), with
#12 replaced by #23 = #31. As m1/m3 increases from 0 to 1 to ∞, e!/s0 increases monotonically from 94.36 to 1986.1
to ∞ as shown in Fig. 53.

In the case of two heavy atoms and a third atom that is much lighter, the Efimov effect can be understood intuitively
using the Born–Oppenheimer approximation [162]. We take the heavy masses to be m1 =m2 =M and the light mass to
be m3 =m with m>M . The hyperradius R defined in Eq. (384) can be identified with the separation r12 of the two heavy
atoms. We take the coordinates of the three particles in the center-of-mass frame to be r1 =+ 1

2 R, r2 =− 1
2 R, and r3 = r.

We assume that the potential between the heavy atoms can be neglected, so that the 3-body potential V (r1, r2, r3) can
be expressed as the sum of two pairwise potentials V (r23) and V (r31). In this case, the 3-body Schrödinger equation
in the center-of-mass frame can be reduced to
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In the Born–Oppenheimer approximation, which becomes exact in the limit M/m → ∞, the wave function is expressed
in the factored form

$(r, R) = %(r, R)&(R), (394)

where %(r, R) can be interpreted as the wave function for the light particle in the presence of the two heavy particles
with fixed positions ± 1

2 R. The 3-body Schrödinger equation in Eq. (393) can be separated into two coupled equations.
The first is the Schrödinger equation for %:
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Braaten and Hammer
Physics Reports, 428 259 (2006)

K-K-Rb

Rb-Rb-K Cs-Cs-Li

"Efimov Unfavored" "Efimov favored"

Efimov trimers for hetero-nuclear systems



Shih-Kuang Tung et al., Phys. Rev. Lett. 113, 240402 (2014)

!"#$% ≈!"π
Li-Cs system is one of the best system

Expected scaling (4.9) was observed



a* = 360(19) a0a* = 230(10) a0

41K87Rb (Tokyo)40K87Rb (JILA)

32

We observed Efimov resonance
between 87Rb and 41K87Rb

87Rb

41K-87Rb

K. Kato, and SI, PRL.  118, 163401 (2017).
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Current interest: 
mixture in a box trap



Quench dynamics of dual BEC

K

Rb

21μm×206μm

miscible

?interaction

t

Dynamical scaling?

A. J. Bray, Adv. Phys. 43, 357 (1994).

collaboration with
Prof. H. Takeuchi(OMU)



Quantum simulation of nucleus

Team leader：Munekazu Horikoshi

We need to 
simulate
nucleus!

• Quantum simulation of nuclear physics
• Precision measurement

shell potential

n

n

p

p

n

p

Injecting Dy atoms in an optical trap
= protons and neutrons in a shell potential

We control

• Number of particles
• spin composition
• interaction
• energy separation

and measure energy precisely

Nucleons have large magnetic moment
→ Let's use Dy atoms!

（Concept）



Conclusion and Outlook
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21μm×206μm

We have been exploring fundamental physics using 
ultracold atoms and molecules.

- Feshbach resonances
- production of rovibrational ground state polar molecules
- heteronuclear efimov state
- stability of me/Mp

- (degenerate mixtures in a box potential?)


