
Gravitational wave observation  
approaching the origin and physics of Black holes

Nobuyuki Kanda 

Nambu Yoichiro Institute of Theoretical and Experimental Physics (NITEP),  

Department of Physics, Osaka Metropolitan University 

2025/2/8 

2nd NTUH-OMU Joint Meeting on Modern Advances in Physics 

@NTHU(國立清華大學), Hsinchu, Taiwan

1

(Some viewgraphs are on behalf of KAGRA)



Ground view of Gravitational Wave (GW) observation and its physics
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Gravitational wave physics and Astrophysics Laboratory @ OMU

Research focus : Gravitational Wave observation, Physics/Astronomy of GW 

We are dedicated on GW physics.  
We are collaborator of KAGRA, large scale laser interferometers. Our laboratory is a one of 
KAGRA's major data analysis bases. 
KAGRA joins the international GW network, so we also worked with LIGO (US) and 
Virgo(Europa). 
- Data analysis, not only for gravitational wave event itself but also many signal processing 
against noises including methods employing machine learning. 
- Data management 
- Calibration 
- Project management 

Staffs : 

Nobuyuki Kanda,   Yosuke Itoh,   
Guo Chin Liu (Tamkang University, NITEP Guest professor) 
11 students,  1 secretary in FY2024
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Workshop on "還暦" 60th birthday of NK @2024/10/24-25

The laboratory has produced many members who are involved in KAGRA, 

especially in data analysis.
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more 100 years ago...
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Einstein's General Relativity and Gravitational Wave (GW) : June 1916
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GW from Transient Astronomical Objects
Gravitational Wave 

is a wave of distortion of space-time. 

strain : h(t)
speed of light 

transverse 

lowest order : mass quadrupole  

Possible Sources for current observation : Compact and/or Energetic Object 

Compact Binary 

Supernovae 

Pulsar
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50~60 years ago
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in 1960's - 1970's



Ideas of GW detection
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~30 years ago ...
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The LIGO project was approved and started in US.

Idea of Large-scale Cryogenic Gravitational-Wave Telescope (LCGT) in Japan.



Prof. K.Kuroda of  the institute of cosmic ray research, 
university of Tokyo proposed Large-scale Cryogenic 
Gravitational-Wave Telescope (LCGT), That is, the current 
KAGRA. 
ICRR GW lab staff was only him and NK.
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K.Kuroda, 天文月報, Oct. 2001 

(But the original of this figure drawn a few years ago.)



(about) 20 years ago ...
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LIGO's first science run  S1 : Aug. - Sep. 2002 

Kanda moved to Osaka City U. = beginning of GW experiment lab at our university : April 2002 

LCGT technical review : 2005



LCGT (KAGRA)'s binary detection "range" VS mass

Sweet spot is 30 M_solar mass binary. However, it was said as not promising...
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Detection Range & Event Rate of Binary 
Inspiral GW
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Viewgraph at LCGT technical review at 2005.
11th Asian-Pacific Regional IAU Meeting  /  Plenary Session C      N. Kanda     /     28-July-2011  
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LCGT detection range (VRSE-D)
Detection Range (with optimal direction)
  for CBC       |  for BH QNM
   SNR=3     |   SNR=3
   SNR=8     |   SNR=8
   SNR=100   |   SNR=100

c t ti (VRSE D)

Compact Binary
Blackhole QNM

NS-NS Detection Range (sky average) 123 Mpc
(optimal direction) 281 Mpc

Expected # of events 6.9 +17.3-5.5 events/year

2011年7月28日木曜日

revised version at APRIM 2011



10 years ago ...
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Gravitational Wave Data Analysis Workshop 2015 at Osaka : The last workshop of 
without real event data 

GW150914 : The first GW direct observation by humankind !



At June 2015
We expected 30 Msolar 

Black hole binary, and 

estimated the detection 

rate (MNRAS 456, 1093–

1114 (2016)) before the 

first detection.
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viewgraph edited by Bruce Allen : (Personal) summary of new, novel, and interesting results presented 
at this workshop 
at GWPAW2015 Osaka, June 2015



Finally, the first detection event by LIGO at Sep. 15th 2015
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Now : observatories
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Laser Interferometric Gravitational Wave Detectors on the Globe
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advanced LIGO

aLIGO (Hanford) 4km

aLIGO (Livingston) 4km

adv.Virgo
3km

GEO 600m

LIGO-India



KAGRA
- Undergorund 
- long baseline : 3km 
- cryogenic (~20K) sapphire 
mirror

Super Kamiokande

KamlandXMASS

3km

CLIO
CLIO
(GW)

KAGRA

KamLAND
(neutrino)

Super Kamiokande 
(neutrino)

XMASS
(dark matter)

Office 

KAGRA tunnel 
entrance

Courtesy: O. Miyakawa
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Observation plan

We are currently in O4 (4th observation).

20



Now, we are in the observational era of GW

Gravitational Wave Open Science Center 

https://www.gw-openscience.org/eventapi/html/allevents/ 

LIGO/Virgo O3 Public Alerts 

https://gracedb.ligo.org/superevents/public/O3/
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GWTC-2, -3 events

Various events appear: 

binary blackhole (BBH) 

around 10-30 Msolar, 

~100 Msolar, 

binary neutron star (BNS) 

neutron star - blackhole (NS-BH) 

High mass ratio, 

Edge at mass gap region,
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based on the data in
https://www.gw-openscience.org/

eventapi/html/allevents/

BBH
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NS-BH
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https://www.ligo.caltech.edu/news/ligo20210629



Extream mass ratio

GW190814 

2.6 Msol ... What ? 
lightest BH ? 

or heaviest NS ? 
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IMBH (Intermediate mass black-hole)

GW190521 

中間質量ブラックホールイベント 

ブラックホールの合体の「積み上げ」なのか？ 
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Enigma : Origins

30 solar mass BH is hard to be 

formed by stars as our sun in some 

reason, typically small progenitor 

mass. 

Pop III star 

First generation stars was made from 

H,He = low metal. Thus these stars 

may form larger mass comparing 

with PopI,II. 

Dynamical formation 

Primordial BH
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FIG. 2. Illustrating substructure in the source chirp-mass distribution for a BBH (with FAR < 1 yr−1, excluding GW190814, as in
Sec. VI). All event inferences shown adopt the same fiducial PE priors shown in Fig. 1 and described in the text. Top: the individual-
event observations versus chirp mass (gray) and an inferred distribution of the observed chirp-mass distribution (black solid) using an
adaptive kernel density estimator [115,116]. The kernel bandwidth is optimized for the local event density and a 90% confidence interval
(black dashed) is obtained by bootstrapping [117]. Bottom: the solid curve is the predicted underlying source chirp-mass distribution
obtained using the flexible mixture model framework (FM); see Sec. III for details. Unlike the top panel, this panel accounts for our
selection effects. The distribution shows three clusters at low masses and a relative deficit of mergers in the chirp-mass
range 10 − 12M⊙.

PHYSICAL REVIEW X 13, 011048 (2023)



Quest : Space-time of BH

Quasi-normal mode 
Blackhole Quasinormal modes (BH-QNMs) are 
dumped-sinusoidal ("ringdown") gravitational wave 
(GW) form. 
BH mass and angular momentum determine its 
frequency and decay time. 
How to identify QNM, especially higher 
modes(index l,m) and overtones(n) are interested 
problem. 

Ergoshere of BH

28

Guan, Lingyan & Tang, Xianzhe & Tian, Jialing & Wu, Jiayi. (2022).  
Journal of Physics: Conference Series. 2364. 012053. 

10.1088/1742-6596/2364/1/012053. 

BH QNM



BH quasi-normal mode

29

h(fc, Q, t0, φ0; t) = e−
πfc(t−t0)

Q cos(2πfc(t− t0)− φ0)



Laplace Transform : time series in real ==> complex frequency domain

Laplace Transform : Idea & Motivation

• clear and simple definition, 

• well known its behavior for typical time signals 
in electric circuit. 

Dumped sinusoidal wave will be represented 
as 'pole' in complex plane.

30

h(t) : time series 
H(s) : Laplace transform of h(t) 
s : complex frequency 
b : Re(s), ω : Im(s)

Re(s) : 1/(decay time)
Im

(s
) :

 fr
eq

ue
nc

y magnitude phase

This property is expected to be suitable  
for viewing BH QNM.

H(s) = L[h](s) =
∫ ∞

0

h(t)e−stdt

=

∫ ∞

0

h(t)e−(b+iω)tdt



Implementation of Laplace transform for Numerical Analysis of 
Gravitational Waveform

• Laplace transform is implemented as Fourier transform of   . 

• We employ fast Fourier transform (FFT) for numerical calculation. 

• With scanning parameter  (= inverse of decay time  = real part of 
complex frequency ),  we got Laplace transform.

h(t)ebt

b
s
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H(s) = L[h](s) =
∫ ∞

0

h(t)e−stdt

=

∫ ∞

0

h(t)e−(b+iω)tdt



Short-time Laplace Transform
• With time slice, we can supress waveform components of non-QNM (i.e, chirp, merger). 

• However, no longer needed to cut-out strictly around QNM.
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Short-time Laplace Transform (cont'd)
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Real observed gravitational waveform : GW150914 (cont'd)
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Summary

Gravitational waves were predicted about 100 years ago and were successfully 

observed for the first time in human history 10 years ago. 

These 30 years or so of "We couldn't find it, but we kept trying" were very 

important. 

Gravitational wave physics and Astrophysics Laboratory at OMU started from 

2002. We have been taken important role of KAGRA design and kick-up of data 

analysis in Japan. 

In the observational era of GW, we hope to execute GW data analysis, 

development of new method and future plan also. 

Personally, NK strongly interested in BH's origin and its space-time.
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