# Gravitational wave observation approaching the origin and physics of Black holes

Nobuyuki Kanda (Some viewgraphs are on behalf of KAGRA) Nambu Yoichiro Institute of Theoretical and Experimental Physics (NITEP), **Department of Physics, Osaka Metropolitan University** 2025/2/8 2nd NTUH-OMU Joint Meeting on Modern Advances in Physics @NTHU(國立清華大學), Hsinchu, Taiwan







### **Ground view of Gravitational Wave (GW) observation and its physics**





# **Coalescence of compact binaries:** Black hole (BH) binary, neutron star (NS) binary, NS-BH

# Fundamental physics: = General relativity and beyond

laser interferometer Very high precision measurement of space-time

optics (classical and quantum), electronics, computing, etc...



Cosmology



### **Ground view of Gravitational Wave (GW) observation and its physics**





# **Coalescence of compact binaries:** Black hole (BH) binary, neutron star (NS) binary, NS-BH

# Fundamental physics: = General relativity and beyond

laser interferometer Very high precision measurement of space-time

optics (classical and quantum), electronics, computing, etc...



Cosmology



### **Research focus : Gravitational Wave observation, Physics/Astronomy of GW**

- We are dedicated on GW physics.
- We are collaborator of KAGRA, large scale laser interferometers. Our laboratory is a one of KAGRA's major data analysis bases.
- KAGRA joins the international GW network, so we also worked with LIGO (US) and Virgo(Europa).
- Data analysis, not only for gravitational wave event itself but also many signal processing against noises including methods employing machine learning.
- Data management
- Calibration
- Project management

### Staffs :

Nobuyuki Kanda, Yosuke Itoh, Guo Chin Liu (Tamkang University, NITEP Guest professor) 11 students, 1 secretary in FY2024

### **Gravitational wave physics and Astrophysics Laboratory @ OMU**





# Workshop on "還暦" 60th birthday of NK @2024/10/24-25

# The laboratory has produced many members who are involved in KAGRA, especially in data analysis.

#### プログラム

| Oct. 24   | Duration | Speaker | Speaker             | Talk title                                           |
|-----------|----------|---------|---------------------|------------------------------------------------------|
| Chair: 覺  |          |         |                     |                                                      |
| 14:00     | 10 min.  | 神田 展行   | KANDA Nobuyuki      | Opening                                              |
| 14:10     | 30 min.  | 謙森 匠    | FUJIMORI Takumi     | 重力波検出器での超軽量暗黒物質探索に向けた最適なデータ解析手法の開発                   |
| 14:40     | 30 min.  | 岩永 響生   | IWANAGA Hibiki      | 深層学習を用いた重力波信号解析による有効スピン推定                            |
| 15:10     | 10 min.  | 休憩      |                     | break                                                |
| Chair: 岩永 |          |         |                     |                                                      |
| 15:20     | 40 min.  | 高橋 弘毅   | TAKAHASHI Hirotaka  | 機械学習の重力波データ解析への応用                                    |
| 16:00     | 25 min.  | 嘉原 浩貴   | YUZURIHARA Hirotaka | 重力波望遠鏡KAGRAにおける鏡のモニタリングシステム                          |
| 16:25     | 15 min.  | 休憩      |                     | break                                                |
| Chair: 山本 |          |         |                     |                                                      |
| 16:40     | 20 min.  | 成川 達也   | NARIKAWA Tatsuya    | Graviton Oscillations                                |
| 17:00     | 20 min.  | 大原 謙一   | OOHARA Ken-ichi     | Hilbert Huang Transform                              |
| 17:20     | 20 min.  | 神田 晟行   | KANDA Nobuyuki      | Laplace Transformation for CBC                       |
| 19:00     |          |         | 懇親会/Banquet         |                                                      |
| 0ct. 25   |          |         |                     |                                                      |
| Chair: 川本 |          |         |                     |                                                      |
| 11:00     | 20 min.  | 内潟 那美   | UCHIKATA Nami       | リングダウン解析について                                         |
| 11:20     | 20 min.  | 横澤 孝章   | YOKOZAWA Takaaki    | 環境雑音に関する研究                                           |
| 11:40     | 20 min.  | 山本 尚弘   | YAMAMOTO Takahiro   | 重力波低遅延探索と検出器特性評価・較正                                  |
| 12:00     | 1h30min. | 昼食      |                     | lunch                                                |
| Chair: 藤森 |          |         |                     |                                                      |
| 13:30     | 30 min.  | 川本 竜生   | KAWAMOTO Ryuki      | 重力波望遠鏡KAGRAにおける干渉計制御系の時刻同期精度の評価                      |
| 14:00     | 30 min.  | 覺 依珠美   | KAKU Izumi          | Gravitational wave radiometry with Stokes parameters |
| 14:30     | 10 min.  | 神田 展行   | KANDA Nobuyuki      | Closing                                              |







# more 100 years ago...



#### **Einstein's General Relativity and Gravitational Wave (GW) : June 1916**



688

Bei der Behandlung der meisten speziellen (nicht prinzipiellen) Probleme auf dem Gebiete der Gravitationstheorie kann man sich damit begnügen, die  $g_{\mu\nu}$  in erster Näherung zu berechnen. Dabei bedient man sich mit Vorteil der imaginären Zeitvariable  $x_4 = it$  aus denselben Gründen wie in der speziellen Relativitätstheorie. Unter »erster Näherung« ist dabei verstanden, daß die durch die Gleichung

Sitzung der physikalisch-mathematischen Klasse vom 22. Juni 1916

# Näherungsweise Integration der Feldgleichungen der Gravitation.

Von A. EINSTEIN.

 $g_{\mu\nu} = -\delta_{\mu\nu} + \gamma_{\mu\nu}$ 



# **GW from Transient Astronomical Objects**

## **Gravitational Wave**

is a wave of distortion of space-time. strain : h(t)speed of light transverse lowest order : mass quadrupole  $I_{\mu\nu}, \tilde{I}_{\mu\nu}$ 

# **Possible Sources for current observation : Compact and/or Energetic Object**

**Compact Binary** Supernovae Pulsar







# **GW from Transient Astronomical Objects**

## **Gravitational Wave**

is a wave of distortion of space-time. strain : h(t)speed of light transverse lowest order : mass quadrupole  $I_{\mu\nu}, \tilde{I}_{\mu\nu}$ 

# **Possible Sources for current observation : Compact and/or Energetic Object**

**Compact Binary** Supernovae Pulsar







# 50~60 years ago

in 1960's - 1970's





# Resonant mass antenna



#### Weber "bar"

# **Ideas of GW detection**











# Resonant mass antenna



#### Weber "bar"

# **Ideas of GW detection**











# ~ 30 years ago ...

The LIGO project was approved and started in US. Idea of Large-scale Cryogenic Gravitational-Wave Telescope (LCGT) in Japan.



#### Proposal to the National Science Foundation

#### THE CONSTRUCTION, OPERATION, AND SUPPORTING RESEARCH AND DEVELOPMENT OF A

#### LASER INTERFEROMETER **GRAVITATIONAL-WAVE** OBSERVATORY

Submitted by the CALIFORNIA INSTITUTE OF TECHNOLOGY Copyright © 1989

Rochus E. Vogt Principal Investigator and Project Director California Institute of Technology

Ronald W. P. Drever Co-Investigator California Institute of Technology

Frederick J. Raab Co-Investigator California Institute of Technology

Kip S. Thorne Co-Investigator California Institute of Technology

Rainer Weiss Co-Investigator Massachusetts Institute of Technology



university of Tokyo proposed Large-scale Cryogenic Gravitational-Wave Telescope (LCGT), That is, the current KAGRA.

ICRR GW lab staff was only him and NK.

11



# (about) 20 years ago ...

LIGO's first science run S1 : Aug. - Sep. 2002 Kanda moved to Osaka City U. = **beginning of GW experiment lab at our university** : April 2002 LCGT technical review : 2005





# LCGT (KAGRA)'s binary detection "range" VS mass

#### **Detection Range & Event Rate of Binary Inspiral GW**



Viewgraph at LCGT technical review at 2005.

# Sweet spot is 30 M\_solar mass binary. However, it was said as not promising...

LCGT and the Global Network of Gravitational W













Gravitational Wave Data Analysis Workshop 2015 at Osaka : The last workshop of without real event data

**GW150914 : The first GW direct observation by humankind !** 

# 10 years ago ...



# At June 2015

We expected 30 Msolar Black hole binary, and estimated the detection rate (MNRAS 456, 1093– 1114 (2016)) before the first detection.



Interesting treasons:

Inspiral and ringdown phases have roughly equal SNRs, so provides good test of GR

If population III stars (formed at redshifts 5-10) exist, these might be a substantial fraction.

Perhaps we will detect several of them in the first aLIGO data run O1, this September!

viewgraph edited by Bruce Allen : ( at this workshop at GWPAW2015 Osaka, <u>June 2015</u>

# 30 + 30 solar mass BHs

#### Interesting target for three

#### Nakano Talk



Osaka 20.6.2015

viewgraph edited by Bruce Allen : (Personal) summary of new, novel, and interesting results presented



15

# Finally, the first detection event by LIGO at Sep. 15th 2015



| Primary black hole mass   | $36^{+5}_{-4}M_{\odot}$         |
|---------------------------|---------------------------------|
| Secondary black hole mass | $29^{+4}_{-4} M_{\odot}$        |
| Final black hole mass     | $62^{+4}_{-4}{M}_{\odot}$       |
| Final black hole spin     | $0.67\substack{+0.05 \\ -0.07}$ |
| Luminosity distance       | $410^{+160}_{-180}$ M           |
| Source redshift z         | $0.09\substack{+0.03 \\ -0.04}$ |
|                           |                                 |

### $36M_{\odot} + 29M_{\odot} \rightarrow 62M_{\odot} + E_{GW}$





# Now: observatories



### Laser Interferometric Gravitational Wave Detectors on the Globe

# GEO 600m

KAG



### adv.Virgo <sub>3km</sub>

# LIGO-India













# KAGRA

- Undergorund
- long baseline : 3km
- cryogenic (~20K) sapphire mirror

00











19

# **Observation plan**



### We are currently in O4 (4th observation).







nology) **Tech** Ö niversity rav 5 N N0 arl Ki  $\bigcirc$ 





nology) Techr Ō niversity Grav Z())  $\bigcirc$ arl Ki  $\bigcirc$ 





nology) **Tech** Ō niversit rav 5 (OZ)arl Kno  $\bigcirc$ 





nology) Techr Ot **University** Grav (OZ) $\times$ arl Kno  $\bigcirc$ 





**Technology** Of University ne Swinbur Grav (OZ) $\times$ arl Kno  $\bigcirc$ 

# GWTC-2, -3 events



based on the data in https://www.gw-openscience.org/ eventapi/html/allevents/

Various events appear: binary blackhole (BBH) around 10-30 Msolar, ~100 Msolar, binary neutron star (BNS) neutron star - blackhole (NS-BH)

High mass ratio, Edge at mass gap region,







### **Almost are "BH-BH**

## There some extreme mass ratio binaries, heave (>100Msol), etc.



# **GWTC-2, -3 binaries**



### **Almost are "BH-BH**

## There some extreme mass ratio binaries, heave (>100Msol), etc.



# **GWTC-2, -3 binaries**

![](_page_31_Picture_0.jpeg)

### **Almost are "BH-BH**

## There some extreme mass ratio binaries, heave (>100Msol), etc.

![](_page_31_Figure_3.jpeg)

# GWTC-2, -3 binaries

![](_page_32_Picture_0.jpeg)

# FACT SHEET GW200105 GW200115

First observation of neutron star-black hole (NSBH) binaries

All parameter ranges correspond to 90% credible bounds. Quoted values are for high spin (<0.99) neutron-star priors

|                           | GW200105                  | GW200115                        |
|---------------------------|---------------------------|---------------------------------|
| observed by               | LIGO Livingston and Virgo | LIGO Livingston & Hanford and \ |
| date, time                | 5 Jan 2020, 16:24:26 UTC  | 15 Jan 2020, 04:23:10 UTC       |
| likely distance           | 170 to 390 Mpc            | 200 to 450 Mpc                  |
| source redshift           | 0.04 to 0.08              | 0.05 to 0.10                    |
| signal-to-noise ratio     | 13.9                      | 11.6                            |
| false alarm rate          | < 1 in 2.8 yr             | < 1 in 100,000 yr               |
| Source masses (M⊙)        |                           |                                 |
| total mass                | 9.7 to 12.0               | 5.7 to 8.6                      |
| primary (BH)              | 7.4 to 10.1               | 3.6 to 7.5                      |
| secondary (NS)            | 1.7 to 2.2                | 1.2 to 2.2                      |
| mass ratio                | 0.18 to 0.30              | 0.16 to 0.61                    |
| BH spin                   | 0.00 to 0.30              | 0.04 to 0.81                    |
| effective inspiral spin   | -0.16 to 0.10             | -0.54 to 0.04                   |
| effective precession spin | 0.02 to 0.23              | 0.04 to 0.51                    |

Inferred merger rate density of NSBH systems\*: 12 to 120 yr<sup>-1</sup> Gpc<sup>-3</sup>

\* Assuming GW200105 and GW200115 are representative of the NSBH population

# **NS-BH**

#### d Vi

Images: companion masses (left), distance vs inclination (right), both with low (<0.05) and high (<0.99) spin priors for the neutron stars

![](_page_32_Figure_12.jpeg)

Credits: B.S. Sathyaprakash, Penn State and Cardiff Unive

![](_page_32_Picture_15.jpeg)

# Extream mass ratio

![](_page_33_Figure_1.jpeg)

Updated 2020-05-16 LIGO-Virgo | Frank Elavsky, Aaron Geller | Northwestern

### **GW190814**

![](_page_33_Figure_4.jpeg)

### 2.6 Msol ... What ? lightest BH ? or heaviest NS ?

![](_page_33_Picture_6.jpeg)

# IMBH (Intermediate mass black-hole)

# LIGO-Virgo Black Hole Mergers

![](_page_34_Figure_2.jpeg)

| $M \ (M_{\odot})$       | $\mathcal{M} \ (M_{\odot})$ | $m_1 \ (M_\odot)$      | $m_2 \ (M_{\odot})$    |
|-------------------------|-----------------------------|------------------------|------------------------|
| $163.9^{+39.2}_{-23.5}$ | $69.2^{+17.0}_{-10.6}$      | $95.3^{+28.7}_{-18.9}$ | $69.0^{+22.7}_{-23.1}$ |

![](_page_34_Picture_5.jpeg)

![](_page_34_Picture_6.jpeg)

30 solar mass BH is hard to be formed by stars as our sun in some reason, typically small progenitor mass.

## **Pop III star**

First generation stars was made from H,He = low metal. Thus these stars may form larger mass comparing with Popl,II.

# **Dynamical formation Primordial BH**

FIG. 2. Illustrating substructure in the source chirp-mass distribution for a BBH (with FAR < 1 yr<sup>-1</sup>, excluding GW190814, as in Sec. VI). All event inferences shown adopt the same fiducial PE priors shown in Fig. 1 and described in the text. Top: the individualevent observations versus chirp mass (gray) and an inferred distribution of the observed chirp-mass distribution (black solid) using an adaptive kernel density estimator [115,116]. The kernel bandwidth is optimized for the local event density and a 90% confidence interval (black dashed) is obtained by bootstrapping [117]. Bottom: the solid curve is the predicted underlying source chirp-mass distribution obtained using the flexible mixture model framework (FM); see Sec. III for details. Unlike the top panel, this panel accounts for our selection effects. The distribution shows three clusters at low masses and a relative deficit of mergers in the chirp-mass range  $10 - 12M_{\odot}$ .

# **Enigma : Origins**

![](_page_35_Figure_7.jpeg)

### PHYSICAL REVIEW X 13, 011048 (2023)

![](_page_35_Picture_9.jpeg)

# **Quest: Space-time of BH**

## **Quasi-normal mode**

- Blackhole Quasinormal modes (BH-QNMs) are (GW) form.
- BH mass and angular momentum determine its frequency and decay time.
- How to identify QNM, especially higher problem.

![](_page_36_Figure_5.jpeg)

# **Ergoshere of BH**

![](_page_36_Picture_7.jpeg)

# **BH quasi-normal mode**

### $h(f_c, Q, t_0, \phi_0; t) = e^{-\frac{\pi f_c(t-t_0)}{Q}} \cos(2\pi f_c(t-t_0) - \phi_0)$

![](_page_37_Figure_2.jpeg)

![](_page_37_Picture_4.jpeg)

Laplace Transform : Idea & Motivation Laplace Transform : time series in real ==> complex frequency domain  $\mathbf{r}$  $H(s) = \mathcal{L}[h](s)$ h(t) : time series

- clear and simple definition,
- well known its behavior for typical time signals in electric circuit.

Dumped sinusoidal wave will be represented as 'pole' in complex plane.

### This property is expected to be **suitable** for viewing BH QNM.

![](_page_38_Picture_5.jpeg)

$$) = \int_{0}^{\infty} h(t)e^{-st}dt$$
$$\int_{0}^{\infty} h(t)e^{-(b+i\omega)t}dt$$

H(s): Laplace transform of h(t)s : complex frequency  $b : \operatorname{Re}(s), \omega : \operatorname{Im}(s)$ 

![](_page_38_Figure_9.jpeg)

![](_page_38_Picture_10.jpeg)

![](_page_38_Picture_12.jpeg)

Implementation of Laplace transform for Numerical Analysis of Gravitational Waveform

$$H(s) = \mathcal{L}[h](s) = \int_0^\infty h(t)e^{-st}dt \quad \cdot \text{ We}$$

$$= \int_0^\infty h(t) e^{-(b+i\omega)t} dt \qquad \text{co}$$

example : double exponential decay time series

![](_page_39_Figure_5.jpeg)

Pole that has smaller b is hard to find in this example, but phase map suggest two poles.

![](_page_39_Picture_8.jpeg)

- Laplace transform is implemented as Fourier transform of  $h(t)e^{bt}$ .
  - employ fast Fourier transform (FFT) for numerical calculation.
  - ith scanning parameter b (= inverse of decay time  $\,$  = real part of mplex frequency s), we got Laplace transform.

![](_page_39_Figure_13.jpeg)

![](_page_39_Figure_14.jpeg)

![](_page_39_Figure_15.jpeg)

![](_page_39_Picture_16.jpeg)

# Short-time Laplace Transform

- However, no longer needed to cut-out strictly around QNM.

![](_page_40_Figure_3.jpeg)

![](_page_40_Picture_4.jpeg)

• With time slice, we can supress waveform components of non-QNM (i.e, chirp, merger).

![](_page_40_Figure_7.jpeg)

32

## Short-time Laplace Transform (cont'd)

![](_page_41_Figure_1.jpeg)

## Real observed gravitational waveform : GW150914 (cont'd)

#### Spectrum at Re(s)=-700

![](_page_42_Figure_2.jpeg)

0.46

![](_page_42_Figure_4.jpeg)

![](_page_42_Picture_5.jpeg)

| Final mass (M_sun)     | +3.4<br>63.1 <sub>-3.0</sub> |
|------------------------|------------------------------|
| Final spin             | +0.05<br>-0.04               |
| GWTC-1 PE for GW150914 |                              |

34

observed for the first time in human history 10 years ago. important.

analysis in Japan.

In the observational era of GW, we hope to execute GW data analysis, development of new method and future plan also. Personally, NK strongly interested in BH's origin and its space-time.

![](_page_43_Picture_4.jpeg)

- Gravitational waves were predicted about 100 years ago and were successfully These 30 years or so of "We couldn't find it, but we kept trying" were very
- Gravitational wave physics and Astrophysics Laboratory at OMU started from 2002. We have been taken important role of KAGRA design and kick-up of data

![](_page_43_Picture_8.jpeg)

![](_page_43_Picture_9.jpeg)

![](_page_43_Picture_10.jpeg)