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We consider a class of d- and f-electron systems in which dipolar-octupolar Kramers doublets arise on
the sites of the pyrochlore lattice. For such doublets, two components of the pseudospin transform like a
magnetic dipole, while the other transforms like a component of the magnetic octupole tensor. Based on a
symmetry analysis, we construct and study models of dipolar-octupolar doublets in itinerant and localized
limits. In both limits, the resulting models are of surprisingly simple form. In the itinerant limit, we find
topological insulating behavior. In the localized limit, the most general nearest-neighbor spin model is the
XYZ model. We show that this XYZ model exhibits two distinct quantum spin ice (QSI) phases, that we
dub dipolar QSI, and octupolar QSI. We conclude with a discussion of potential relevance to real material
systems.
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Finding new phases of matter is a problem of funda-
mental importance in condensed matter physics. This
search motivates in part the exploration of new classes
of materials, where novel parameter regimes can lead to
phases not realized elsewhere, and other new phenomena.
Recently, there has been intense interest in materials
combining strong spin-orbit coupling (SOC) with substan-
tial electron correlation, especially in compounds with
heavy elements [1]. SOC entangles the spin and orbital
degrees of freedom, and microscopic models including
SOC have, in many cases, not yet been constructed and
studied. Spin-orbital entanglement can lead to rather
complicated models, but this need not always be the case.
In this Letter, we study a class of systems where strong

SOC leads to surprisingly simple microscopic models
that—in different limits—naturally realize not only a
topological band insulator, but also two distinct quantum
spin ice (QSI) phases. One of these is the familiar QSI
phase [2,3], here dubbed dipolar QSI (dQSI), while the
other is a novel octupolar QSI (oQSI). dQSI and oQSI are
two distinct symmetry enriched Uð1Þ quantum spin liquids,
with space group symmetry playing the crucial role.
Much of the recent activity in strong-SOC systems has

focused on 5d iridates and 4f pyrochlores. Various novel
models and phases have been predicted for iridates with
pyrochlore [4–9], hyperkagome [10–15], honeycomb [16],
and hyperhoneycomb lattices [17,18], while the dQSI phase
has been predicted in 4f pyrochlores [19–23]. In many of
these systems, SOC and other interactions lead to Kramers
doublets on the d or f ions, which in turn are the building
blocks for minimal effective models to capture the low-
energy physics. Any Kramers doublet is associated with a
time-reversal odd pseudospin operator τμ (μ ¼ x, y, z), but
not all Kramers doublets transform identically under space
group symmetry [24]. The most familiar possibility, which

holds in the above recently studied 4f and 5d systems, is
that, just like a true spin-1=2 moment, τμ transforms as a
magnetic dipole (i.e., as a pseudovector) under space group
operations.
In this Letter, focusing on the pyrochlore lattice of

corner-sharing tetrahedra, we consider a class of systems
with Kramers doublets arising from d or f ions, where (in
suitable local coordinates discussed below) τz and τx both
transform like the z component of a magnetic dipole, while
τy transforms as a component of the magnetic octupole
tensor. Models of such dipolar-octupolar (DO) doublets
have striking properties in both weak and strong correlation
limits. We note that a similar type of Kramers doublet has
been considered on other lattices [25,26].
More specifically, we consider both A2B2O7 pyrochlores

and AB2O4 spinels, where the pyrochlore A site, and B sites
in both families, form a pyrochlore lattice. We consider two
principal situations: (1) In both pyrochlores and spinels, B
is a transition metal in d1 or d3 electron configuration and A
is nonmagnetic; (2) in pyrochlores, A is a trivalent rare
earth with a partially filled 4f shell, and B is nonmagnetic.
Both cases can lead to effective models of DO doublets on
the pyrochlore lattice.
Case (1).—The magnetic ions reside at the center of a

trigonally distorted oxygen octahedron; the single-ion
physics has been treated, e.g., in [24]. Because of the cubic
crystal field only the t2g manifold is relevant. Projection P
of orbital angular momentum L into the t2g manifold is
PLP ¼ −l, where the lμ are spin-1 matrices. The single-
site Hamiltonian within the t2g manifold is

H ¼ −λl · SþHtri þHint; (1)

with λ the strength of SOC and S the spin operator. Htri ¼
Δ3ðlziÞ2 is the trigonal crystal field allowed by D3d site
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symmetry. The zi axis is the local C3 axis (i ¼ 1;…; 4 is
the sublattice index), and xi, yi axes are specified in the
Supplemental Material [27]. The interaction Hint is of
Kanamori form, and is treated in the atomic limit where
it is characterized by Hubbard interaction U and Hund’s
coupling JH [27].
Defining an effective total angular momentum

jeff ¼ lþ S, SOC alone splits the t2g manifold into an
upper doublet (jeff¼1=2) and lower quadruplet (jeff¼3=2).
Effective models of jeff ¼ 1=2 doublets are relevant for 5d5

iridates [28,29] and have received significant attention
[4,8,10,16–18]. While the jeff ¼ 1=2 doublet is dipolar,
it does not obey a naive Heisenberg exchange model due to
strong SOC [26,30].
The trigonal crystal field Htri splits the quadruplet into

two Kramers doublets, for a total of three doublets. If
Δ3 > 0, the lower and upper doublets are dipolar and
transform as the Γþ

4 irreducible representation of the D3d
double group [31]. The middle doublet is a DO doublet;
it has jzieff ¼ �3=2, and transforms as Γþ

5 ⊕Γþ
6 (Fig. 1).

The doublet is half filled for d3 electron configuration, or
(if Δ3 < 0) for d1 configuration.
While Hubbard interaction does not affect the single-site

energy spectrum for a fixed number of electrons, Hund’s
coupling plays an important role. When Δ3 > 0, we find
the d3 ground state multiplet remains a DO doublet even
for large JH [27]. However, as JH increases, the energy gap
between the ground state and the dipolar doublet first
excited state decreases, vanishing in the limit of large JH
where we recover a spin-3=2 moment. The splitting
between the ground and first excited doublets is substantial
only when JH ≲ λ, and increases with Δ3=λ [27]. Hund’s
coupling has no effect for d1 configuration.
Case (2).—Here A is a trivalent rare earth, where the

ground state has angular momentum J. TheD3d-symmetric
crystal field Hamiltonian is Hcf ¼ 3B0

2ðJzÞ2 þ � � � [32].
If J ¼ 9=2 or 15=2, and B0

2 < 0 and dominates the other
crystal field terms, then the ground state is a DO doublet
with Jz ¼ �J, transforming as Γþ

5 ⊕Γþ
6 under D3d site

symmetry. The DO doublet nature of the ground state is
robust even when the other crystal field terms are appreci-
able, as long as the ground state is adiabatically connected
to the Jz ¼ �J doublet. Among the lanthanides, only Nd3þ,
Dy3þ, and Er3þ have the required values of J. Of these,
B0
2 < 0 only for Nd3þ and Dy3þ [32]. Indeed, the crystal

field ground state of Nd3þ in Nd2Ir2O7 is a DO doublet
[33], and a DO doublet ground state is predicted for Dy3þ
in Dy2Ti2O7[34].
The action of Fd3̄m space group symmetry on DO

doublets is given in the Supplemental Material [27]. The
D3d site symmetry is generated by a threefold rotation
C3, a mirror plane M, and inversion I , with: C3∶τμ → τμ,
M∶τx;z → −τx;z, M∶τy → τy, and I∶τμ → τμ. These trans-
formations are not those of a pseudovector, and imply that
τx;z transform like the zi component of a magnetic dipole,
while τy transforms like a component of the magnetic
octupole tensor [27].
We now proceed to construct effective models using a

single DO doublet on each pyrochlore lattice site as the
basic building block. We assume throughout that higher-
energy on-site degrees of freedom can be ignored. Even
when this is not quantitatively accurate, our models may
still be valid as minimal low-energy effective models.
We consider limits of itinerant and localized electrons,

constructing tight-binding (TB) and spin Hamiltonians,
respectively, in the two limits. The Hamiltonian contains all
electron hopping terms (itinerant limit) or spin exchange
terms (localized limit) allowed by time reversal and Fd3̄m
space group symmetry, up to a given spatial range. We note
that tight-binding and exchange models of dipolar Γþ

4

doublets have been extensively studied in the context of
iridate and rare-earth pyrochlores [4,9,21,22,35–37].
In the itinerant limit, we ignore electron interactions, and

the general form of the model is

HTB ¼
X

ðr;r0Þ
½c†rTrr0cr þ H:c:�: (2)

Here, r labels pyrochlore lattice sites, the sum is over all
pairs of sites, and cTr ¼ ðcrþ; cr−Þ. Trr0 ¼ T†

r0r is a 2 × 2
matrix describing tunneling between sites r and r0. The
operator c†r� creates an electron at site r with jzieff ¼ �3=2
in case (1), or Jzi ¼ �J in case (2). Pseudospin operators
are τμr ¼ ð1=2Þc†rσμcr, where σμ are the Pauli matrices.
Time reversal symmetry implies Trr0 ¼ t0rr0 þ itμrr0σ

μ.
For nearest-neighbor sites, the hopping matrix Trr0 has a

remarkably simple form. Choosing an appropriate orienta-
tion of bonds [27], we find Trr0 ¼ i½t1nnσ1 þ t3nnσ3�, taking
the same form for all nearest-neighbor bonds. A global
rotation about the y axis in pseudospin space can, thus,
eliminate t1nn, leading to ~Trr0 ¼ i~t3nnσ3, where the tilde
indicates we are working in the transformed basis. Thus,
the nearest-neighbor model has a Uð1Þ spin symmetry, and
the purely imaginary (spin-dependent) hopping is similar

FIG. 1 (color online). (a) The evolution of d electron states
under cubic crystal field, SOC, and trigonal distortion. (b) The
energies for the three local doublets under different trigonal
distortions. Compression (elongation) along the C3 axis corres-
ponds to Δ3 > 0 (Δ3 < 0).
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to models considered in [38]. A highly unstable Fermi
surface coincides with a surface of intersection between
two bands [27].
Evidently the nearest-neighbor tight-binding model is

highly fine tuned, so we also include second-neighbor
hopping, which is specified by parameters ( ~w0, ~wx, ~wz)
[27]. Second-neighbor hopping breaks the Uð1Þ spin sym-
metry and gaps out most of the nearest-neighbor Fermi
surface. One finds either a metallic state, or a semimetal
with isolated band touchings occurring at the W points
(see Fig. 2). These W-point touchings are, in fact, unstable
and are gapped out by fourth-neighbor hopping, leading
to a strong topological band insulator [27].
We now consider the large-U limit of localized electrons,

where the degrees of freedomare the pseudospin−1=2mom-
ents τμr . We find that the most general symmetry allowed
nearest-neighbor exchange is Hex ¼

P
hrr0i½Jxτxrτxr0þ

Jyτ
y
rτ

y
r0 þ Jzτzrτ

z
r0 þ Jxzðτxrτzr0 þ τzrτ

x
r0 Þ�, where the sum is

over nearest-neighbor bonds. Quite remarkably, the
exchange is identical in form on every bond. Similar to
the itinerant limit, the Jxz term can be eliminated by a global
pseudospin rotation [27]. After this transformation, the
exchange is of the remarkably simple XYZ form

HXYZ ¼
X

hrr0i
~Jx ~τxr ~τxr0 þ ~Jy ~τ

y
r ~τ

y
r0 þ ~Jz ~τzr ~τ

z
r0 : (3)

This result should be contrasted with the case of dipolar
doublets on the pyrochlore lattice,where the formof nearest-
neighbor exchange varies according to the orientation of
each bond [20].
Beyond simplicity of form, this pyrochlore XYZ model

supports two distinct QSI phases. To see this, we first
review the XXZ model ( ~J⊥ ≡ ~Jx ¼ ~Jy), where QSI was
identified in a study of the regime ~Jz > 0, ~Jz ≫ j ~J⊥j [2].
For simplicity, we concentrate on ~J⊥ < 0, where quantum
Monte Carlo calculations [39] found QSI for j ~J⊥j= ~Jz < c,
with c ≈ 0.1. When j ~J⊥j=~Jz > c, magnetic order is present.

It is important to note that QSI is robust to arbitrary
symmetry breaking perturbations, and thus, survives away
from the XXZ line.
The physics of QSI can be understood by mapping to a

compact Uð1Þ gauge theory, which is exact for large ~Jz [2].
The centers of pyrochlore lattice tetrahedra r form a dia-
mond lattice, and each pyrochlore site r corresponds to a
unique nearest-neighbor diamond link (r, r0). We introduce
lattice vector fields Err0 ¼ ~τzr and eiArr0 ¼ ~τxr þ i~τyr , where
r (r0) lies in the diamond A (B) sublattice, and Err0 ¼ −Er0r,
Arr0 ¼ −Ar0r. E (A) can be interpreted as the electric field
(vector potential) of a compact Uð1Þ lattice gauge theory, of
which QSI is the deconfined phase, supporting a gapless
photon, and gapped electric charge and magnetic monopole
excitations.
So far, we have been describing dQSI, so named because

the electric field Err0 ¼ ~τzr is a magnetic dipole. In the
low-energy continuum theory, the electric field is odd
under time reversal and transforms under the Γþ

4 (pseudo-
vector) representation of theOh point group. [The magnetic
field is time reversal even, and transforms under the Γ−

4

(vector) representation.] The same dQSI phase occurs for
large ~Jx > 0 ( ~Jy;z < 0 for simplicity), where Err0 ¼ ~τxr ,
which transforms identically to ~τzr under symmetry.
The novel oQSI phase arises for ~Jy > 0 large ( ~Jx;z < 0

for simplicity), so that Err0 ¼ ~τyr . In this case, the electric
field is purely octupolar. In the continuum theory, the
electric field is still time reversal odd, but transforms under
the Γþ

5 representation of Oh (neither vector nor pseudo-
vector). The magnetic field transforms as Γ−

5 .
Thus, oQSI and dQSI are distinguished by the action of

space group symmetry on electric and magnetic fields, and
can be viewed as distinct symmetry enriched Uð1Þ quantum
spin liquids. This means that dQSI and oQSI are distinct
phases in the presence of space group symmetry, but weak
space-group-breaking perturbations take dQSI and oQSI
into the same Uð1Þ quantum spin liquid phase (which is
robust to arbitrary weak perturbations regardless of sym-
metry). In terms of physical properties, dQSI and oQSI
both have a T3 contribution to specific heat from gapless
photons; in f-electron realizations, this is expected to be
about 1000 times the phonon contribution [21]. Dipolar
spin correlations, as measured, e.g., by neutron scattering,
will, however, be quite different, as illustrated by the fact
that, neglecting effects of long-range dipolar interaction,
equal-time dipolar correlations fall off as 1=r4 in dQSI [2],
but as 1=r8 in oQSI [27]. In future work, it would be
interesting to compare the dynamic spin structure factor
in dQSI and oQSI. Neutron scattering signatures of dQSI
have been discussed in [21].
So far, we have avoided discussing the case ~J⊥ > 0;

here, less is known for the XXZ model, due to the presence
of a sign problem in quantum Monte Carlo calculations. In
the j ~J⊥j=~Jz ≪ 1 limit, ~J⊥ favors QSI with π flux of the
vector potential Arr0 through each pyrochlore hexagon,

1 2 1 2 1 2 1 21 2 1 2 1 2 1 2

FIG. 2 (color online). Phase diagram of the tight-binding model
wtih first- and second-neighbor hopping, as a function of ( ~w0, ~wx,
~wz), setting ~t3nn ¼ 1. Very small fourth-neighbor hopping is
included to remove unstable band touchings at the W point.
Metallic (M) and strong topological insulator (TI) phases are
found. The phase diagram is symmetric under ~wx → − ~wx and
~w0 → − ~w0.
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unlike for ~J⊥ < 0, where zero flux is favored [27]. We have
not considered the properties of the resulting π-flux
versions of dQSI and oQSI, leaving this for future work.
QSI is expected to persist over a larger range of ~J⊥ > 0,
since, in this case, both ~Jz and ~J⊥ interactions are
frustrated [22].
We now discuss the phase diagram of the XYZ model.

The simplest magnetically ordered phases appear ferro-
magnetic in local coordinates; for instance, if ~Jz < 0 and is
dominant, h~τzri ¼ md ≠ 0. This is the “all-in-all-out”
(AIAO) state, where dipoles point along the local zi axes,
toward (away from) pyrochlore tetrahedron centers lying in
the diamond A (B) sublattices (or vice versa). Since τz and
τx transform identically under space group, the same AIAO
state arises when ~Jx < 0, j ~Jxj ≫ ~Jy;z. A distinct magneti-
cally ordered phase, with h~τyr i ¼ mo ≠ 0, is obtained when
~Jy < 0, j ~Jyj ≫ ~Jx;z. This state has antiferro-octupolar
(AFO) order, and no on-site dipolar order.
To study the phase diagram away from the simple limits

discussed above, we employ gauge mean field theory
(gMFT) [21,22] to our model [27]. gMFT makes the
Uð1Þ gauge structure explicit via a slave particle construc-
tion, and is capable of describing both QSI and magnetic
phases. For simplicity, we limited our analysis to the
shaded regions shown (Fig. 3) on the faces of a cube in
( ~Jx, ~Jy, ~Jz) space. We find only the two QSI and
magnetically ordered phases discussed above. In the same
regions of parameter space we analyzed via gMFT, the
XYZ model can be studied via quantum Monte Carlo
calculations without a sign problem [27].
We now comment on the prospects for applying the

models discussed above to real materials. Promising
systems to realize the XYZ model are Nd2B2O7 pyro-
chlores. B ¼ Zr, Sn compounds are insulators exhibiting

antiferromagnetic order at low temperature [40,41]. While
the B ¼ Ir compound is known to carry a DO doublet [33],
the physics is complicated by the presence of Ir conduction
electrons [7]. Synthesis of other Nd pyrochlores has been
reported [42]. The validity of the XYZ model description
could be ascertained and the exchange couplings measured
directly via neutron scattering in applied magnetic field, as
was done in the dipolar case for Yb2Ti2O7 [43]. DO
doublets are likely in Dy pyrochlores [34], but the large
moment of Dy3þ means dipolar interactions must be
included. DO doublets may also occur in B-site rare earth
spinels, and there is evidence for this in CdEr2Se4 [44].
More broadly, strongly localized d-electron Mott insulators
with S ¼ 3=2 and D3d site symmetry comprise another
class of systems where DO doublets may be the low-energy
degrees of freedom.
5d systems are a likely setting for itinerant (or weakly

localized) DO doublets. Cd2Os2O7, believed to exhibit
AIAO order below a finite-temperature metal-insulator
transition [45,46], has Os3þ in 5d3 configuration.
Microscopic calculations indicate a DO doublet ground
state, but show a very small splitting between ground and
first excited doublets [47], likely due to Hund’s coupling.
Moreover, electronic structure calculations do not show a
clear separation between DO doublet and other energy
bands [48,49]. Thus, 5d1 systems, perhaps on other lattices,
may be more promising for the realization of itinerant DO
doublets.
In summary, we have pointed out that Kramers doublets

with dipolar-octupolar character can arise on the sites of the
pyrochlore lattice in both d- and f-electron systems. We
studied effective models of DO doublets in itinerant and
localized limits, finding topological insulation in the former
case, and two distinct quantum spin ice phases in the latter.
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