

RIXS study on van der Waals multiferroic CuCrP₂S₆

Yun-Chuan Su¹, Jia-Syuan Su², Hsiao-Yu Huang³, Jun Okamoto³, Chia-Nung Kuo^{4,5}, Chin Shan Lue^{4,5,6}, Chien-Te Chen³, Atsushi Fujimori^{3,7,8}, Di-Jing Huang^{1,3} ¹Department of Physics, National Tsing Hua University, Hsinchu 30013, Taiwan ²Department of Electrophysics, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan ³National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan ⁴Department of Physics, National Cheng Kung University, Tainan 70101, Taiwan ⁵Taiwan Consortium of Emergent Crystalline Materials, National Science and Technology Council, Taipei 10601, Taiwan ⁶Program on Key Materials, Academy of Innovative Semiconductor and Sustainable Manufacturing, National Cheng Kung University, Tainan ⁷Center for Quantum Technology and Department of Physics, National Tsing Hua University, Hsinchu 30013, Taiwan70101, Taiwan ⁸Department of Physics, University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan

ABSTRACT

Characterized by the layered structures and weak interlayer interactions, van-der-Waals quasi-2D materials mark a significant milestone in the field of spintronics due to their unique electronic and magnetic properties. Incorporating multiferroicity, these materials exhibit highly-manipulative properties, allowing the exploration of new quantum phenomena and the potential for revolutionary advances in low-power, non-volatile devices. CuCrP₂S₆, one of the van-der-Waals multiferroic materials, has ignited our curiosity. Here, we use high-resolution resonant inelastic X-ray scattering (RIXS) to probe its electronic excitations across the transition temperature 32K, 145K and 190 K. Photon energy- and polarization-dependent RIXS results of CuCrP₂S₆ will be presented and discussed.

500 F

(stinu

arb. (arb.

Introduction

Van-der-Waals Quasi-2D layered structures, together with multiferroicity, have emerged as promising characteristics for advancing the field of spintronics.

> vdW material: anisotropy

high tunability •

Multiferroics: • magnetoelectric coupling • manipulation of electric dipole & spin order with external field

Experimental results

Material CuCrP₂S₆

• Coexistence of ferromagnetism and ferroelectricity gives rise to its multiferroic properties. While the staggered displacement of the Cu^+ cations contributes to the ferroelectricity, the dominant intralayer ferromagnetism, coupled with the weak interlayer antiferromagnetism caused by the $\ {
m Cr}^{3+}$ cations, leads to its unique ferromagnetism.

• Two transitions associated with Cu^+ structural disorder happen at 145K and 190 K, and one magnetic transition due to the magnetic moment of Cr^{3+} happens at 32 K.

• The calculated crystal structure suggests that $CuCrP_2S_6$ possesses the crystal field symmetry lower than D_{3d} .

• Excitation selectivity : The satellite feature in XAS at L3 +0.8 eV is associated with the antibonding orbitals due to hybridization effects. Tuning to this energy, the charge transfer excitation is selectively excited in RIXS.

Polarization-dependent RIXS

4.0

 Scattering geometry of RIXS experiments The crystallographic axes a and c axes are set in the scattering plane determined by XRD

TPS**41**A beamline

• dd excitations are dipole-allowed in a RIXS process because RIXS involves two dipole transition : XAS and XES. The $t_{2g} - e_g$ excitation energy indicates the value of 10Dq.

• Due to the large spin-orbit coupling for the core hole created in the intermediate state of the RIXS process, a 3d electron in the final state can undergo a spin-flip with respect to that of the initial state.

0	1	2	3	4	0	1	2	3	4	0	1	2	3	4
Energy loss(eV)				Energy loss(eV)					Energy loss (eV)					

For transitions across 145 K and 190 K, clear evolution of dd excitation at 2 eV is observed, which is sensitive to the electronic structure. In constrast, there are no clear changes in the spectral line shape across 32 K. Probably, one assumption is that the low-energy magnons are beyond the energy resolution of ~ 30 meV at Cr L_3 -edge RIXS.

Discussions

- We observed multiplet excitations through polarization-dependent RIXS, and found the the crystal field of Cr^{3+} in $CuCrP_2S_6$ is **1**.6 eV with a small trigonal distortion.
- Multiplet calculations using the D_{3d} crystal field symmetry explain the major dd excitations of Cr^{3+} . The comparisons between calculations and RIXS data show that reductions in the Slater integrals are required to explain the data. However, the calculated 2.5-eV dd feature is inconsistent with the data.
- By comparing with d^3 Tanabe-Sugano diagram, the RIXS excitations can be assigned to the states ${}^4A_{2g}$, ${}^4T_{2g}$, ${}^2E_{1g}$ and ${}^2T_{1g}$. • The relative intensity of the double-peak dd excitation may arise from structural disordering dominated by D_{σ} . At L_3 , the double-peak feature is better captured by $D_{\sigma} \sim -0.03$ eV at higher temperature, and captured by $D_{\sigma} \sim 0.05$ eV at lower temperature.