

## **Proximity-Effect-Driven Superconductivity in Two-Dimensional Bi Thin Films on Al(111)**

Kuan-Ying Sung (宋冠穎)<sup>1\*</sup>, Nitin Kumar<sup>1</sup>, Deepan Beja<sup>1</sup>, Yu-Yao Su (蘇煜堯)<sup>1</sup>, Gustav Bihlmayer<sup>2</sup>, Pin-Jui Hsu (徐斌睿)<sup>1,3</sup>



<sup>1</sup>Department of Physics, National Tsing Hua University, Hsinchu, Taiwan <sup>2</sup>Peter Grünberg Institut and Institute for Advanced Simulation, Forschungszentrum Jülich and JARA, D-52425 Jülich, Germany <sup>3</sup>Center for Quantum Technology, National Tsing Hua University, Hsinchu, Taiwan

\* Presenter: Kuan-Ying Sung, Email: fun970610@gmail.com





#### $\succ$ The atomic structure consists of three

> An enhanced superconducting gap on hexagonal ( $\sqrt{3} \times \sqrt{3}$ )R30°, Kagome, and honeycomb lattice have been mapped out by line spectroscopy measured along the blue arrow in the respective topography in the figure m~o.



phases: hexagonal  $(\sqrt{3} \times \sqrt{3})R30^\circ$ , Kagome- $(3 \times 3)$ , and honeycomb- $(3 \times 3)$ with respect to the  $(1 \times 1)$  unit cell of Al(111), where the lattice constant is 0.286 nm.

#### ♦ DFT calculation

# BiAl<sub>2</sub> surface alloy in-plane spin-polarization in the surface layer Rashba splitting

Bi kagome on BiAl<sub>2</sub>/Al(111) surface alloy (black) and in-plane spin-polarization (red/bue) of Bi in the surface layer (SQA at 45 degree)



Al (111) bulk projected bands sqrt(3) x sqrt(3) "in-plane" unit cell



From density functional theory calculations, it is evident that the surface alloy exhibits a distinct Bi state but above the Fermi level.

✦ Structural model





> Additionally, Rashba splitting phenomenon is observed in the surface alloy, where the energy bands exhibit a clear splitting.

### **×** Summary

- We have successfully grown Bi/Al(111) with three distinct phases, hexagonal  $(\sqrt{3} \times \sqrt{3})R30^\circ$ , Kagome Ι.  $-3 \times 3$  and honeycomb- $3 \times 3$ , respectively.
- Through DFT calculations, we can accurately construct a structural model that includes the correct 2. formation of BiAl<sub>2</sub>.
- Line dI/dU spectra from hexagonal ( $\sqrt{3} \times \sqrt{3}$ )R30°, Kagome and honeycomb phases to Al(111) 3. substrate show enhancement of the superconducting gap.

### **Reference**

[1] T. Neupert, M. M. Denner, J.-X. Yin, R. Thomale, M. Z. Hasan, Nat. Phys., 18, 137 (2022).

[2] Y.-H. Lin, C.-J. Chen, N. Kumar, T.-Y. Yeh, T.-H. Lin, S. Blügel, G. Bihlmayer, P.-J. Hsu, Nano Lett., 22, 8475 (2022).