Exploring Moiré Excitons in Transition Metal Dichalcogenide and Complex Oxide Heterostructures

Shih-Chieh Lin^{1*}, Jan-Chi Yang², and Wei-Ting Hsu¹ ¹Department of Physics, National Tsing Hua University, Hsinchu 300044, Taiwan ²Department of Physics, National Cheng Kung University, Tainan 70101, Taiwan

* Presenter: Shih-Chieh Lin, email: jerry12121210@gmail.com

Transition metal dichalcogenides (TMDs) have recently emerged as a promising platform for exploring novel moiré physics. So far, however, moiré excitons have only been observed and studied in semiconducting TMD heterostructures. In this work, we explore the unique properties of moiré excitons formed in heterostructures combining TMDs and complex oxides. By integrating these two material systems, we aim to exploit the multifunctional capabilities of moiré excitons and complex oxides. Utilizing photoluminescence and differential reflectance spectroscopy, we probe the signatures of moiré exciton emissions in these heterostructures. This research paves the way for potential applications in tunable moiré superlattices and optoelectronic devices, while also broadening the understanding of excitonic interactions in hybrid material systems.

INTRODUCTION

RESULT & DISCUSSION

• Similar lattice constants & structures \rightarrow Moiré pattern

PL & DR Characteristic

 $\mathbf{b}_i = \mathbf{G}_i - \mathbf{G'}_i$ $\mathbf{k} = \mathbf{q} + n_1 \mathbf{b}_1 + n_2 \mathbf{b}_2,$ $n_i \in \text{integers}$ **DR Fitting**

- *The curves are not real function • **b**_i: Mini Brillouin zone (mBZ) wavevector • **k**_i: Momentum in MoS₂. WS₂
- **q**_i: Momentum in mBZ

Assume normal incidence...

 $R_{WS_2} - R_{STO}$

 $\frac{\Delta R}{R}$ = R_{STO} $|r_{02}|$ $2n_i$ $r_{ij} =$ $t_{ii} =$ θ: Phase difference through TMDs

 $\left| r_{01} + \frac{t_{01}t_{10}r_{12}e^{i\theta - \alpha d}}{1 - r_{12}r_{10}e^{i\theta - \alpha d}} \right|$

• α: Absorption rate of TMDs

Acknowledgments

This research was supported by the National Science and Technology Council of Taiwan (Grant 112-2112-M-007-036-MY3) and the Yushan Fellow Program from the Ministry of Education of Taiwan (Grant MOE-109-YSFMS-0002-001-P1).

CONCLUSIONS

- To avoid defect states
 - 1. \rightarrow DR is better for probing the moiré potential.
 - 2. \rightarrow Varying temperature also works.
- Moiré effect seems subtle (shallow potential depth) \rightarrow Quantitative analysis is needed.