

Yu-Shiba-Rusinov States of Magnetic Fe Adatoms on Superconducting Ni Kagome Lattice

Yu-Yao Su¹*, Yen-Hui Lin¹, Nitin Kumar¹, Deepan Beja¹, Kuan-Ying Sung¹, Philipp Rüßmann^{2,3}, Gustav Bihlmayer², Pin-Jui Hsu^{1,4}

¹Department of Physics, National Tsing Hua University, Hsinchu, Taiwan

²Peter Grünberg Institut and Institute for Advanced Simulation, Forschungszentrum Jülich and JARA, D-52425 Jülich, Germany

³Institute of Theoretical Physics and Astrophysics, University of Würzburg, 97074 Würzburg, Germany

⁴Center for Quantum Technology, National Tsing Hua University, Hsinchu, Taiwan

email: steven900212@gmail.com

Introduction

***** Yu-Shiba-Rusinov States

• The spins of magnetic impurities on a superconducting substrate are exchangecoupled with Cooper pairs.

• This interaction forms pairs of bound states within the superconducting gap that are symmetric with respect to the Fermi level.

***** Literature review: Ni Kagome/Pb(111)

- Deposit Ni on Pb(111) substrate at 80 K and post annealing 20mins at 200K.
- The Ni Kagome lattice constant is about 7.06 Å corresponding to a (2×2) supercell

with respect to the Pb(111) (1×1) unit cell.

Experimental Results

***** Topography: Fe/Ni Kagome/Pb(111)

Theoretical Calculations

Monomer

- Deposit Fe on superconducting Ni Kagome/ Pb(111) at 80K.
- There are two types of Fe adatoms on Ni Kagome/Pb(111): the higher one is trimer, and the lower one is monomer.

***** High-Resolution Spectroscopy with Superconducting tip Spatial mapping of dI/dV

±0.05 ±0.38 ±0.71 ±1.15

Fe Monomer:

- The contributions of d_{xz} and d_{yz} orbitals with the triangular symmetry of the Ni Kagome lattice explain the observed asymmetries in the spatial mapping of the YSR states.
- **Fe Trimer:**
- Conbining the contributions of all three atoms
- results in the triangular charge density distribution observed in the experiment at $\varepsilon = 1.62$ meV. • At the largest energy position, all states display the
- d_{2^2} character, which is isotropic and corresponds to the spatial mapping at $\varepsilon = 2.28$ meV.

Summary	Reference
1. Fe atoms on Ni Kagome/ Pb(111) have scattering potential that breaks Cooper pairs and gives rise to the in-gap YSR states.	[1] YH. Lin, CJ. Chen, N. Kumar, TY. Yeh, TH. Lin, S. Blügel, G. Bihlmayer, PJ. Hsu, Nano Lett. 2022, 22, 8475.
2. There are two types of Fe adatoms on Ni Kagome/Pb(111): one is a trimer, and the other one is a monomer.	
3. The deconvolution method used to resolve the energy positions of YSR states is consistent with the experimental results.	 [2] F. Küster, A. M. Montero, F. S. M. Guimarães, S. Brinker, S. Lounis, S. S. P. Parkin, P. Sessi, Nat Commun 2021, 12, DOI 10.1038/s41467-021-21347-5.
4. The contributions from the different d-orbitals of Fe atoms can explain the asymmetry observed in the YSR states.	