

Probing the Gauge-boson Couplings of Axion-like Particle at the LHC

Based on: JHEP 05 (2024) 324

Chen Wang

National Tsing Hua University

In cooperation with:

Kingman Cheung, Wanyon Hsiao, C.J.Ouseph

Outline

- Introduction to ALP
- Simulation and Selection Method
- Numerical Result
- Summary

Introduction to ALP

Introduction to ALP

• Axion is proposed to solve the strong CP problem

7. Conclusion

But then again, maybe the axion doesn't exist.

Credit: Ciaran A.J. O'Hare, "Cosmology of axion dark matter", PoS COSMICWISPers (2024), 040

- ALP stands for axion-like particle
- ALP is a dark matter candidate.
- The mass range of ALP could be very wide.
- ALP is constrained by cosmology, astronomy and collider experiments.

The ALP Model

- The interaction Lagrangian: $\mathcal{L}_{ALP} = \mathcal{L}_{f} + \mathcal{L}_{g} - \frac{a}{f_{a}} [C_{ww} W_{\mu\nu}^{+} \widetilde{W}^{-\mu\nu} + (C_{BB} c_{w}^{2} + C_{WW} s_{w}^{2}) F_{\mu\nu} \widetilde{F}^{\mu\nu} + (C_{BB} s_{w}^{2} + C_{WW} c_{w}^{2}) Z_{\mu\nu} \widetilde{Z}^{\mu\nu} + 2(C_{WW} - C_{BB}) c_{w} s_{w} F_{\mu\nu} \widetilde{Z}^{\mu\nu}]$
- The ALP-gauge boson couplings:

$$g_{aZZ} = \frac{4}{f_a} (C_{BB} s_w^2 + C_{WW} c_w^2) \qquad g_{aZ\gamma} = \frac{8}{f_a} (C_{WW} - C_{BB}) c_w s_w$$

$$g_{a\gamma\gamma} = \frac{4}{f_a} (C_{BB} c_w^2 + C_{WW} s_w^2) \qquad g_{aWW} = \frac{4}{f_a} C_{WW}$$

$$\sum_{n=1}^{N} \sum_{i=1}^{n} a_i^{(i)}$$

Current Limit of ALP coupling

- In my study, we focus on the couplings g_{aZZ} and $g_{aZ\gamma}$ with the mass range $1 \text{ GeV} \le M_a \le 100 \text{ GeV}$.
- Most of the constraints are given by collider experiment in this mass range
- $g_{aZZ}, g_{aZ\gamma}$ can be transferred from $g_{a\gamma\gamma}$ by choosing C_{WW}, C_{BB} .

•
$$g_{aZZ} = \frac{4}{f_a} (C_{BB} s_w^2 + C_{WW} c_w^2)$$
 $g_{aZ\gamma} = \frac{8}{f_a} (C_{WW} - C_{BB}) c_w s_w$
 $g_{a\gamma\gamma} = \frac{4}{f_a} (C_{BB} c_w^2 + C_{WW} s_w^2)$

Current Limit of ALP coupling

Simulation and Selection Method

Simulation Method

- Center-of-mass energy $\sqrt{s} = 14 \ TeV$
- Model: FeynRules (with ALP Lagrangian)
- Parton-level: MadGraph5_aMC@NLO
- Showering: Pythia8 (with default setting)
- Detector: Delphes3 (with ATLAS card)

Signal Events (Z channel)

- $pp \rightarrow Za(Z \rightarrow l^+l^-)(a \rightarrow \gamma\gamma)$
- 1 GeV $\leq M_a \leq 100 \text{ GeV}$
- 10^4 events for each ALP mass
- Benchmark value:
 - $f_a = 1 TeV$
 - $C_{WW} = 2$
 - $C_{BB} = 1$
 - No fermion and gluon couplings
 - Decay width is set to be auto

Note:

$$g_{aZZ} = \frac{4}{f_a} (C_{BB} s_w^2 + C_{WW} c_w^2)$$
$$g_{aZ\gamma} = \frac{8}{f_a} (C_{WW} - C_{BB}) c_w s_w$$

Signal Events (Z channel)

Background Events (Z channel)

- Signal: $pp \rightarrow Za(Z \rightarrow l^+l^-)(a \rightarrow \gamma\gamma)$
- A cutoff $M_a = 25 \ GeV$ is applied.
- 25 $GeV \le M_a \le 100 \ GeV$
 - 1. $pp \rightarrow l^+ l^- \gamma \gamma (ll \gamma \gamma BG)$ 2. $pp \rightarrow l^+ l^- j \gamma (ll j \gamma BG)$ with $f_{i \rightarrow \gamma} \approx 5 \times 10^{-4}$

(Credit: ATL-PHYS-PUB-2017-001)

• 1 GeV < $M_a \le 25$ GeV 1. $pp \rightarrow l^+ l^- \gamma \gamma (ll \gamma \gamma BG)$ 2. $pp \rightarrow l^+ l^- j (ll jBG)$

- Large mass region($M_a > 25 \ GeV$) Small mass region($M_a \le 25 \ GeV$)
 - 1. $N_{\gamma} = 2$
 - 2. $N_l = 2$
 - 3. $80 \ GeV < M_{ll} < 100 \ GeV$
 - 4. $p_{T_{\gamma\gamma}} > 80 \ GeV$
 - 5. $0.9M_a < M_{\gamma\gamma} < 1.1M_a$

- 1. $N_j \ge 1$ 2. $\min\left(\frac{E_{had}}{E_{EM}}\right) < 0.02$
- 3. $N_l = 2$
- 4. 80 $GeV < M_{ll} < 100 GeV$

5.
$$\frac{\tau_2}{\tau_1} < 0.05$$

6. M_{jet} mass window

Selection Method

- Large mass region
 - 1. $N_{\gamma} = 2$
 - 2. $N_l = 2$
 - 3. $80 \ GeV < M_{ll} < 100 \ GeV$
 - 4. $p_{T_{\gamma\gamma}} > 80 \ GeV$
 - 5. $0.9M_a < M_{\gamma\gamma} < 1.1M_a$
- For W channel: $M_{ll} \rightarrow M_T$

- Large mass region
 - 1. $N_{\gamma} = 2$
 - 2. $N_l = 2$
 - 3. $80 \ GeV < M_{ll} < 100 \ GeV$
 - 4. $p_{T_{\gamma\gamma}} > 80 \ GeV$
 - 5. $0.9M_a < M_{\gamma\gamma} < 1.1M_a$

 $M_a = 100 \ GeV, \mathcal{L} = 300 f b^{-1}$

Selection	Signal	$ll\gamma\gamma \mathbf{BG}$	$ll\gamma j\mathbf{BG}$
Before cuts	151948	29728	1048
$N(\gamma) = 2$	69243	12387	61.30
N(l) = 2	32152	5488	2.83
$80~GeV < M_{ll} < 100~GeV$	29584	739	0.60
$pT_{\gamma\gamma} > \text{GeV}$	24965	90	0.05
$90~{\rm GeV} < {\rm M}_{\gamma\gamma} < 110~{\rm GeV}$	24707	13	0.02

$$s, b = \sigma_{s,b} \times \frac{N_{seleciton}}{N_{sim}} \times \mathcal{L}$$

$$\tau_N = \frac{1}{d_0} \sum_k p_{T,k} \times \min\{\Delta R_{1,k}, \Delta R_{2,k}, \dots, \Delta R_{N,k}\}$$

For ideal ALP jet, $\frac{\tau_2}{\tau_1} = 0$.

$M_a \; ({\rm GeV})$	M_{jet} selection (GeV)			
25	$22.5 < M_{jet} < 30$			
20	$18 < M_{jet} < 24$			
10	$9 < M_{jet} < 12$			
5	$4.5 < M_{jet} < 6$			
1	$0.5 < M_{jet} < 2$			

- Small mass region
 - 1. $N_j \ge 1$ 2. $\min\left(\frac{E_{had}}{E_{EM}}\right) < 0.02$
 - 3. $N_l = 2$
 - 4. 80 $GeV < M_{ll} < 100 GeV$

5.
$$\frac{\tau_2}{\tau_1} < 0.05$$

6. M_{jet} mass window

 $M_a = 10 \; GeV$, $\mathcal{L} = 300 \; fb^{-1}$

Selection	Signal	$ll\gamma\gamma~{f BG}$	<i>llj</i> BG 164921970	
Before cuts	426413	29728		
$N(jet) \ge 1$	356610	17327	139649327	
$min(\frac{E_{had}}{E_{EM}}) < 0.02$	267532	8150	26141121	
N(l) = 2	88523	1169	649627	
$80~{\rm GeV} < M_{ll} < 100~{\rm GeV}$	81957	181	460297	
$\frac{\tau_2}{\tau_1} < 0.05$	62811	46	36613	
$9~{\rm GeV} < M_{\rm jet} < 12~{\rm GeV}$	48995	0	0	
	N.7			

$$s, b = \sigma_{s,b} \times \frac{N_{seleciton}}{N_{sim}} \times \mathcal{L}$$

• Small mass region

1.
$$N_j \ge 1$$

2. $\min\left(\frac{E_{had}}{E_{EM}}\right) < 0.02$

3.
$$N_l = 2$$

4. 80
$$GeV < M_{ll} < 100 GeV$$

5.
$$\frac{\tau_2}{\tau_1} < 0.05$$

6. M_{jet} mass window

Numerical Result

Numerical Result (Z channel)

$M_a \; ({\rm GeV})$	Signal $ll\gamma\gamma BG+$		$+ll\gamma j\mathbf{BG}$	$llj\mathbf{BG}$		
	before	after	before	after	before	after
100	151947	24707		12.80		
80	184160	25211		12.78		
65	214813	23522		7.13		
50	253073	23207	30775	4.16	-	
40	284456	19286		3.87		
30	321176	12205		2.97		
25	342005	25206		0		0
20	366568	34311		0		0
10	426413	48995	29728	0	164950770	0
5	457138	48914		0.59		165
1	472141	46175		29.43		18474

Numerical Result (W channel)

$M_a \ ({\rm GeV})$	Signal		$l\nu_l\gamma\gamma\mathbf{BG}$ + $l\nu_l\gamma j\mathbf{BG}$		$l\nu_l j \mathbf{BG}$	
	before	after	before	after	before	after
100	1375200	230208		48.01		
80	1674900	244870		52.87		
65	1992000	261151		57.09		
50	2357400	245170	33579	36.57		
40	2690700	220906		26.43		
30	3066000	193771		21.05		
25	3267000	224443		0		0
20	3555000	290799		0.57		0
10	4218000	461449	28311	1.98	1766100000	1766
5	4575000	522007		6.79		17661
1	4797000	469147		110		326729

Numerical Result

100

Numerical Result

Summary

Summary

- We investigate the behavior of ALP-gauge boson coupling g_{aZZ} , $g_{aZ\gamma}$ and g_{aWW} at $\mathcal{L} = 300 \ fb^{-1}$, $3000 \ fb^{-1}$ and $\sqrt{s} = 14 \ TeV$.
- We gives a procedure to move out most of the background and enhance the signal efficiency.
- We show the sensitivity of g_{aZZ} , $g_{aZ\gamma}$ and g_{aWW} can be improved around one order of magnitude compared to the current limit in the mass range $1 \text{ GeV } \leq M_a \leq 100 \text{ GeV}$.