Constraints on Extended Axion Structures from the Lensing of Fast Radio Bursts

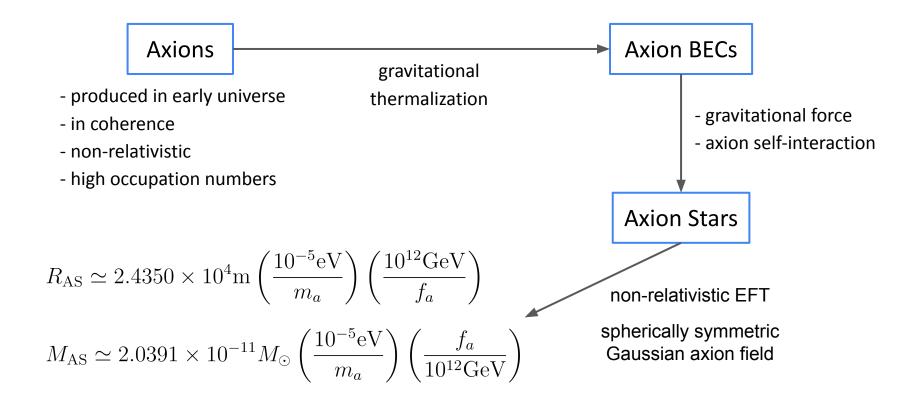
Kuan-Yen Chou (National Tsing Hua University)

With Jan Tristram Acuña and Po-Yan Tseng

Based on: JCAP 04 (2025) 067 [2501.07176]

The Future is Whispering 06/26/2025

Axion


- QCD axion:
 - 1. Proposed by Peccei and Quinn in 1977 to solve the Strong CP Problem
 - 2. m_a and f_a are dependent

$$m_a = 10^{-5} \text{eV} \left(\frac{5.691 \times 10^{11} \text{GeV}}{f_a} \right)$$

- Axion-Like Particle (ALP):
 - 1. Shares similar properties with the QCD axion but doesn't solve the Strong CP Problem
 - 2. m_a and f_a are independent
- Key Properties: pseudo-scalar boson couple to Standard Model particles, e.g. $\mathcal{L}_{a\gamma\gamma}=-rac{1}{4}g_{a\gamma\gamma}aF_{\mu\nu}\widetilde{F}^{\mu\nu}$
- Promising dark matter candidate

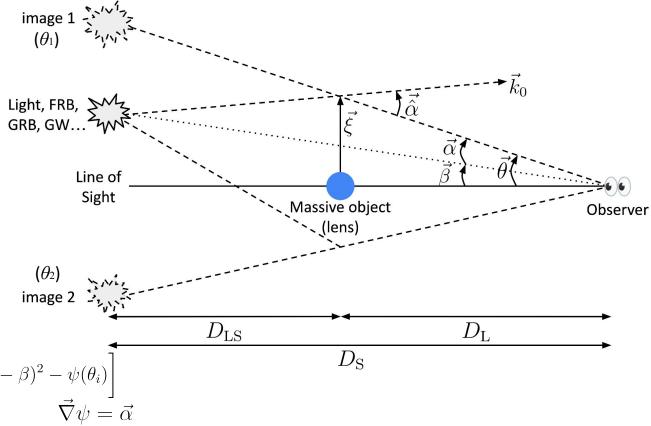
Axion Star Formation

[Eric Braaten and Hong Zhang. Rev. Mod. Phys. 91, 041002, 2019] [Kohei Fujikura et al.. Phys. Rev. D 104, 123012 (2021)]

Gravitational Lensing

[Ramesh Narayan, Matthias Bartelmann. astro-ph/9606001]

•
$$\vec{\beta} = \vec{\theta} - \vec{\alpha}$$


$$\bullet \quad \alpha_{\rm grav}(\theta) = \frac{D_{\rm LS}}{D_{\rm S}} \frac{4GM_{\rm L}(\theta)}{D_{\rm L}\theta} \qquad \begin{array}{l} \text{Light, FRB,} \\ \text{GRB, GW...} \end{array}$$

- Signatures:
 - Magnification:

$$\mu(\theta_i) = \left| \frac{\beta}{\theta} \frac{d\beta}{d\theta} \right|_{\theta_i} \right|^{-1}$$

- Time delay:

$$t(\theta_i) = (1 + z_L) \frac{D_L D_S}{D_{LS}} \left[\frac{1}{2} (\theta_i - \beta)^2 - \psi(\theta_i) \right]$$
$$\vec{\nabla} \psi = \vec{\epsilon}$$

$a\gamma\gamma$ Coupling Induced Bending Angle

$$\bullet \quad \mathcal{L}_{a\gamma\gamma} = -\frac{1}{4} g_{a\gamma\gamma} a F_{\mu\nu} \widetilde{F}^{\mu\nu}$$

Modification on Maxwell's equations and photon dispersion relation

[Jamie I. McDonald and Luís B. Ventura, Phys. Rev. D 101, 123503 (2020)]

$$\omega^{\pm}(\vec{k}) = |\vec{k}| \pm \frac{g_{a\gamma\gamma}}{2} \left[\hat{k} \cdot \vec{\nabla} a + \dot{a} \right] \mp g_{a\gamma\gamma} \dot{a} \frac{\omega_{\mathrm{p}}^2}{4|\vec{k}|^2} - \frac{g_{a\gamma\gamma}^2}{8|\vec{k}|} \left[\dot{a}^2 + (\hat{k} \cdot \vec{\nabla} a)^2 - 2|\vec{\nabla} a|^2 \right] + \mathcal{O}(g_{a\gamma\gamma}^3)$$

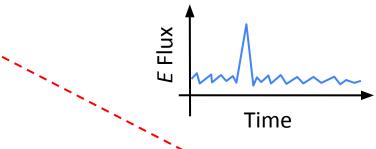
• $a\gamma\gamma$ coupling induced bending angle:

$$\vec{\alpha}_{a\gamma\gamma} \simeq -\frac{D_{\rm LS}}{D_{\rm S}} \frac{g_{a\gamma\gamma}^2}{8|\vec{k}_0|^2} \int_{-\infty}^{\infty} \vec{\nabla}_{\perp} (\partial a(\xi, z))^2 dz$$

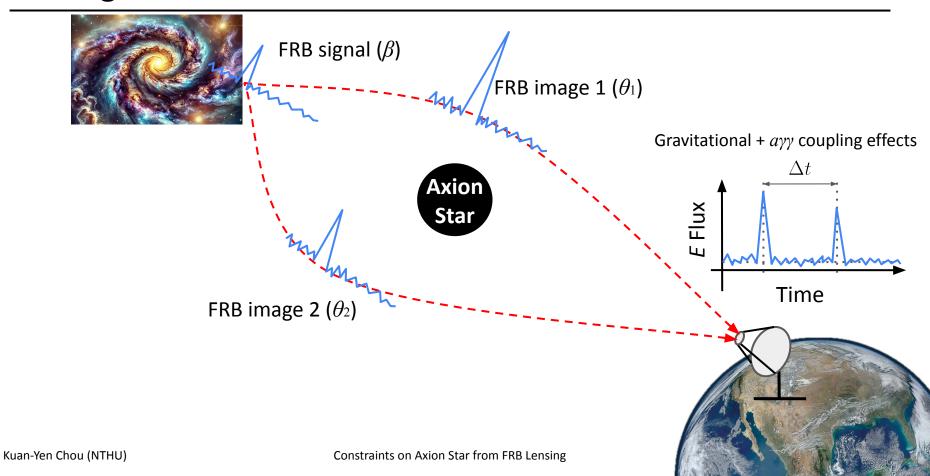
Full Lens Equation

• Lens equation:
$$\tilde{\beta} \approx \tilde{\theta} - \frac{1}{\tilde{\theta}} \left[1 - \exp\left(-w_{\rm E}^2 \tilde{\theta}^2\right) \right] - A \, w_{\rm E}^2 \, \tilde{\theta} \, \exp\left(-w_{\rm E}^2 \tilde{\theta}^2\right)$$
 $\tilde{x} \equiv \frac{x}{\theta_{\rm E}}$ -> finite-size + gravity + $a\gamma\gamma$ effects $\theta_{\rm E} = \sqrt{4G_N M_{\rm AS} \frac{D_{\rm LS}}{D_{\rm S} D_{\rm L}}}$

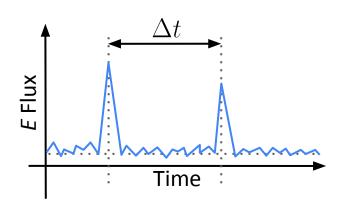
Finite size parameter:
$$w_{\rm E} \equiv \frac{D_{\rm L} \theta_{\rm E}}{R_{\rm AS}} = \frac{R_{\rm E}}{R_{\rm AS}}$$
 $w_{\rm E} \gg \mathcal{O}(1)$: lens is effectively pointlike $w_{\rm E} \sim \mathcal{O}(1)$: finite size effect is notable


$$a\gamma\gamma$$
 strength parameter: $A\equiv rac{1}{\pi G_N}\left(rac{g_{a\gamma\gamma}}{4k_0R_{
m AS}}
ight)^2\propto rac{g_{a\gamma\gamma}^2}{f_0^2}$

• Signatures: $\mu(\theta_i) = \mu_{\text{grav.} + a\gamma\gamma}(\theta_i)$ $t(\theta_i) = t_{\text{grav.} + a\gamma\gamma}(\theta_i)$


Fast Radio Burst (FRB)

- tera habranaha
- 1. From extragalactic space
- 2. Unknown origins
- 3. High energy flux density (~Jy)
- 4. Duration (~ms)
- 5. Rate: 10³-10⁴/sky/day (expected)



FRB Lensing Cross Section

[Julian B. Muñoz et al. Phys.Rev.Lett. 117 (2016) 9, 091301]

• Flux ratio:

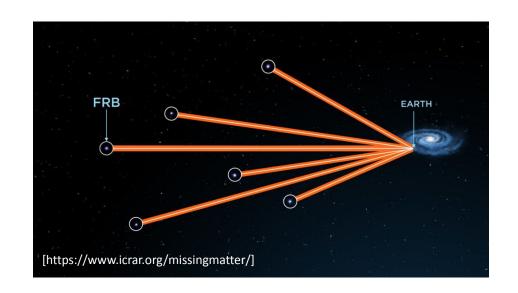
$$R_f \equiv \left| \frac{\max(\mu(\theta_1), \mu(\theta_2))}{\min(\mu(\theta_1), \mu(\theta_2))} \right|$$

• Time difference of arrival:

$$\Delta t \equiv |t(\theta_1) - t(\theta_2)|$$

- Lensing criteria: $R_{f, ext{max}} = 5$ $\Delta t_{ ext{min}} = 1 \mu ext{S}$
- $R_f(\beta) \le R_{f,\text{max}} \quad \Delta t(\beta) \ge \Delta t_{\text{min}}$

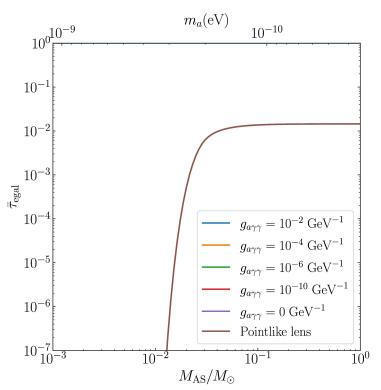
Lensing cross section:

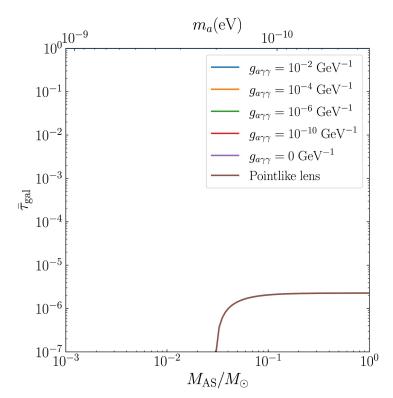

$$\sigma = \pi D_{\rm L}^2 2 \int_0^{\beta_c} \Theta(R_{f,\rm max} - R_f(\beta)) \Theta(\Delta t(\beta) - \Delta t_{\rm min}) \beta d\beta$$

- Optical depth: $\bar{\tau}(M_{\rm AS}) = \int \mathrm{d}z_{\rm S} N_{\rm FRB}(z_{\rm S}) \int \mathrm{d}\chi(z_{\rm L}) (1+z_{\rm L})^2 n(M_{\rm AS}) \sigma(M_{\rm AS},z_{\rm L})$
- Constant comoving number density:

$$N_{\text{FRB}}(z) = \mathcal{N} \frac{\chi^2(z)}{H(z)(1+z)} \exp\left(-\frac{d_{\text{L}}^2(z)}{2d_{\text{L}}^2(0.5)}\right)$$

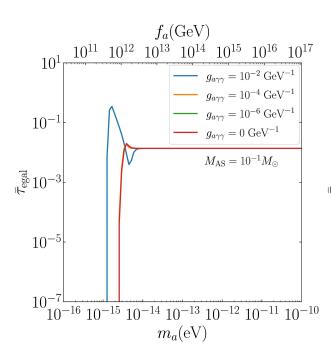
Lensing probability:

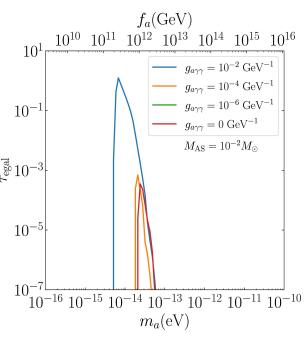

$$P = 1 - e^{-\bar{\tau}}$$

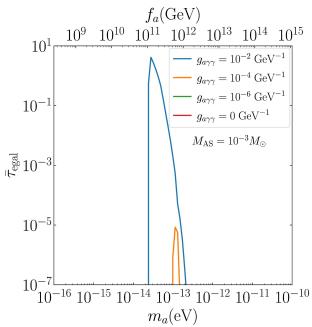

Lensing Probability (QCD Axion)

 $R_{f,\text{max}} = 5$ $\Delta t_{\text{min}} = 1 \mu \text{s}$ $f_{\text{FRB}} = 600 \text{MHz}$

Extragalactic contribution

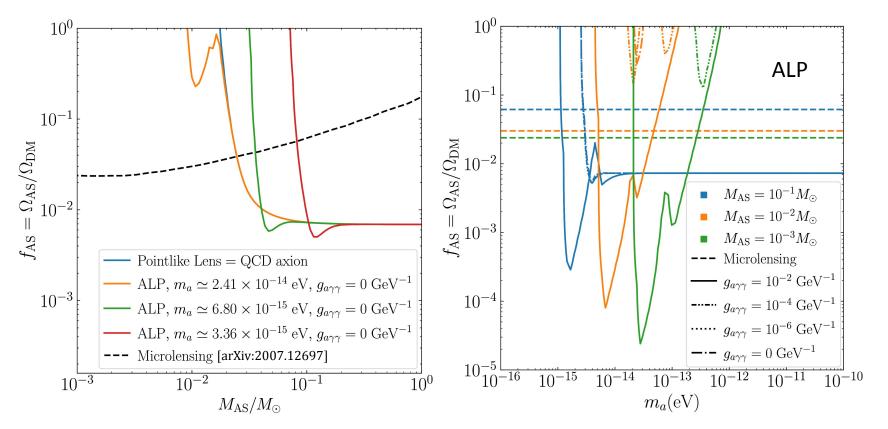



Galactic contribution



Lensing Probability (ALP)

Extragalactic contribution (dominant)



Lensed FRB Signals observed by CHIME

- Canadian Hydrogen Intensity Mapping Experiment (CHIME) radio telescope
 - 1. Observed frequency range: 400-800 MHz
 - 2. Detected 536 FRB signals in CHIME/FRB first catalog (2018/8/28-2019/7/1)
 - 3. Observe zero lensed FRB signal [Zarif Kader et. al. (CHIME/FRB Collaboration), Phys. Rev. D, 106(4):043016, 2022] [Calvin Leung et. al. (CHIME/FRB Collaboration), Phys. Rev. D, 106(4):043017, 2022]
- Assuming 10⁴ observed FRB signals for 0 lensed FRB signal
 - ightarrow Exclude the axion parameter spaces that give $N_{ ext{lensed}} > 1$
- ullet Estimated number of lensed FRB: $N_{
 m lensed} = (1-e^{-ar{ au}})N_{
 m obs}$

Summary and Conclusion

- 1. QCD axions and ALPs can form the localized astrophysical object: axion stars.
- We combine the gravitational effect with additional finite-size and axion-photon coupling effects on FRB lensing.
- Our results which use FRB lensing to probe axion stars are competitive with the microlensing results which operate in optical band.

Thank You