

JUNO sensitivity to resonance-enhanced MeV dark matter annihilation in the galactic halo

VAN THI DIEU HIEN (文氏妙賢)

Institute of Physics, NYCU, Hsinchu, Taiwan

in collaboration with Prof. Guey-Lin Lin

TAIWAN, JUN 27, 2025

DARK MATTER

OUTLINE

Introduction and Motivation \square — Constrain the $U(1)_{L_{\mu}-L_{\tau}}$ model and the enhancement Conclusion Ш

INTRODUCTION & MOTIVATION

Why Dark Matter (DM)?

Galactic halo

$\chi + \overline{\chi}$ DM annihilation $ar{ u}$

JUNO detector figure

The Jiangmen Underground Neutrino Observatory (JUNO) detector

INTRODUCTION & MOTIVATION

The Jiangmen Underground Neutrino Observatory (JUNO) detector

A central acrylic sphere containing 20 kt of liquid scintillator (LS) will significantly improve the sensitivity $\langle \sigma v \rangle$.

JUNO sensitivity to the detection of neutrinos from DM annihilation from galactic halo.

$m_{\chi}: 15 \mathrm{MeV} - 100 \mathrm{MeV}$

The thermally averaged Dark Matter (DM) annihilation cross section

A. Abusleme et al JCAP09(2023)001

The measurement of the muon anomalous magnetic moment result (June 3rd, 2025)

R. Aliberti et al., The anomalous magnetic moment of the muon in the Standard Model: an update (2025), arXiv:2505.21476 [hep-ph].

Aguillard, D. P. and others, Measurement of the Positive Muon Anomalous Magnetic Moment to 127 ppb (2025), arXiv:2506.03069 [hep-ex]

 $U(1)_{L_{\mu}-L_{\tau}}$ model contributes to $(g-2)_{\mu}$ at one-loop level:

$$\Delta a_{\mu} = \frac{g_{Z'}^2}{8\pi^2} \int_0^1 dx \frac{2m_{\mu}^2 x^2 (1-x)}{x^2 m_{\mu}^2 + (1-x)m_{Z'}^2} \,.$$

P. Fayet, Phys. Rev. D **75**, 115017, *M. Pospelov, Phys. Rev. D* **80**, 095002

The new gauge boson Z' acts as a mediator between the Standard Model (SM) and Dark Matter (DM).

In the mass range of $\mathcal{O}MeV \leq m_{Z'} \leq 200 MeV$, and the required coupling $g_{Z'}$ is necessary to constraint.

For DM $m_{\chi} < m_{\mu}$ —> mainly annihilate to neutrinos $\chi \bar{\chi} \rightarrow \nu_l \bar{\nu}_l$, $l = \mu, \tau$.

The thermally averaged Dark Matter (DM) annihilation cross section

 $m_{\chi} < m_{Z'}/2$:

$$\langle \sigma v \rangle = \frac{g_{Z'}^4 q_{\chi}^2}{12\pi (8m_{\chi}^4) T K_2^2(m_{\chi}/T)} \int_{y_{min}}^{y_{max}} \mathrm{d}\, y \, \sqrt{s - 4m_{\chi}^2} \, \frac{s(s + 2m_{\chi}^2)}{\Gamma_{Z'} m_{Z'}} \, K_1 \left(\frac{1}{2} \left(\frac{1}{2} \frac{1}{$$

with y(s) = tan⁻¹
$$\left(\frac{s - m_{Z'}^2}{\Gamma_{Z'} m_{Z'}} \right)$$

 $s = m_{Z'}^2 + \tan(y)\Gamma_{Z'}m_{Z'},$

$$y_{min} = y(s = max(0.9m_{Z'}^2, 4m_{\chi}^2), y_{max} = y(s = 1.1m_{Z'}^2).$$

M. Drees, Physics Letters B 827 (2022) 136948 H. Murayama, Physics Review D 79, 095009 (2009)

 $m_{\chi} > m_{Z'}/2$:

$$\langle \sigma v \rangle = \frac{1}{8m_{\chi}^4 T K_2^2(m_{\chi}/T)} \int_{4m_{\chi}^2}^{\infty} \mathrm{d} s \sigma(s) \sqrt{s} (s - 4m_{\chi}^2) K_1 \left(\frac{\sqrt{s}}{T}\right) K_1 \left(\frac{\sqrt{s}}{T$$

where the $K_n(x)$ are modified Bessel functions of order n, can be computed when x>0

$$\sigma(s)_{\chi\bar{\chi}\to\nu\bar{\nu}} = \frac{g_{Z'}^4 q_{\chi}^2}{12\pi} \sqrt{\frac{s}{s-4m_{\chi}^2}} \frac{s^2 + 2m_{\chi}^2 s}{s \left[(s-m_{Z'}^2)^2 + \Gamma_{Z'}^2 m_{Z'}^2\right]} \,.$$

$$\Gamma_{Z'\to\bar{\nu}_l\nu_l} = \frac{2g_{Z'}^2m_{Z'}}{24\pi} = \frac{g_{Z'}^2m_{Z'}}{12\pi} \,.$$

P. Gondolo, Nucl. Phys. B 360 (1) (1991) 145–179

The freeze-out point is given in terms of the scaled inverse temperature $x_f = \frac{x}{T}$: $x_{f} = ln \frac{0.076 M_{pl} m_{\chi} \langle \sigma v \rangle}{g_{*}^{1/2} x_{c}^{1/2}} .$

 $M_{pl} = 1.22 \times 10^{19} \text{GeV}$ and g_* is the total number of effectively relativistic degrees of freedom at the time of freeze-out.

The efficiency of freeze-out annihilation is expressed through the integral $J = \int_{x_1}^{\infty} \frac{\langle \sigma v \rangle}{x^2} dx$,

K. Griest, Phys. Rev. D 43 (1991) 3191–3203

The present-day mass density of χ is then given by $\Omega_{\chi}h^2 = \frac{1.07 \times 10^9 \text{ GeV}^{-1}}{Jg_*^{1/2}M_{pl}} \,.$

If $m_{\chi} < m_{Z'}/2 \rightarrow \langle \sigma v \rangle$ will fall after DM decoupling, making DM annihilation in the present-day Universe smaller than the one in the early Universe.

 $m_{Z'}=15[MeV], g_{\chi}=g_{Z'}=3\times 10^{-4}$

Near the resonance, DM annihilation is needed to reprodu the DM relic abundance in the parameter space region of m_{χ} , g_{χ} .

Two intersection points

M. Drees, Physics Letters B 827 (2022) 136948 H. Murayama, Physics Review D 79, 095009 (2009)

Early Universe

$$\langle \sigma v \rangle_{early} = \frac{1}{8m_{\chi}^4 T K_2^2(m_{\chi}/T)} \int_{4m_{\chi}^2}^{\infty} ds \ \sigma(s) \ \sqrt{s}(s - 4m_{\chi}^2) K_1\left(\frac{\sqrt{s}}{T}\right) \ ,$$

$$x_f = \frac{m_{\chi}}{T}$$
$$K_n(x) = \sqrt{\frac{\pi}{2x}} e^{-x}$$

Present-day Universe

$$v_0/c = 220/(3 \times 10^5)$$

$$\langle \sigma v \rangle = \sqrt{\frac{2}{\pi}} \frac{g_{Z'}^4}{96\pi m_{\chi}^3 T^{3/2}} \int_{4m_{\chi}^2}^{\infty} ds \ s^{3/4} \sqrt{s - 4m_{\chi}^2} \frac{s + 2m_{\chi}^2}{(s - m_{Z'}^2)^2 + \Gamma_{Z'}^2 m_{Z'}^2} \ e^{\frac{2m_{\chi} - \sqrt{s}}{T}}$$

With parameters $(m_{Z'}, g_{Z'}, m_{\chi})$ producing the measured relic abundance of [*]

$$\Omega_{\chi}h^2 = 0.12$$

*P.A. Zyla, et al., PTEP 2020 (8) (2020) 083C01

The annihilation process through $Z': \chi\chi \to Z' \to \nu\bar{\nu}$.

Here we did not show the WIMP particles with canonical $\langle \sigma v \rangle \sim 3 \times 10^{-26} \text{cm}^3 \text{s}^{-1}$

Define:

$$Ratio = \frac{\langle \sigma \mathbf{v} \rangle_{\text{today}}}{\langle \sigma \mathbf{v} \rangle_{\text{early}}}$$

At the desired DM relic density, $\Omega_{\chi}h^2 = 0.12$

 \rightarrow The thermally averaged DM annihilation cross section $\langle \sigma v \rangle_{\text{today-universe}}$ is enhanced compared to $\langle \sigma v \rangle_{\text{early-universe}}$.

ightarrow The predicted $\langle \sigma v \rangle_{\rm today-universe}$ is testable by JUNO detector.

$$\epsilon = \left(\frac{2m_{\chi}}{m_{Z'}} - 1\right) \gtrsim 0$$

 g_{χ} does not have to be equal to $g_{Z'}$ \rightarrow The range of g_{χ} can be determined by SIDM constraints.

I

CONSTRAINT ON SELF-INTERACTION DM (SIDM)

Peter et al., 2013, arXiv:1208.3026. $\sigma_{\chi\chi}/m_{\chi} \le 1 \ cm^2 g^{-1}$

SIDM in merging clusters

Randall et al., 2007, Astrophys. J. 679 (2008) 1173. arXiv:0704.0261. $\sigma_{\chi\chi}/m_{\chi} \leq 1.25 \ cm^2 g^{-1}$

Harvey et al., 2015, arXiv:1503.07675v2.

$$\sigma_{\chi\chi}/m_{\chi} \le 0.47 \ cm^2 g^{-1}$$

The sample: XMM-Newton Cluster Outskirts Project (X-COP, D. Eckert et al. 2017) - 12 massive galaxy clusters with Einasto profile. $-> \sigma_{\chi\chi}/m_{\chi} \le 0.19 \ cm^2 g^{-1}$ (2022).

In the case that we consider the g_{χ} is bigger, so $g_{Z'}$ is smaller. Now, if we assume $g_{\chi} \neq g_{Z'}$,

 \rightarrow What will happen?

Example: $m_{Z'} = 15$ [MeV], $g_{Z'} = 3 \times 10^{-4}$ $g_{\chi} = 10^{-3}$, 10^{-2} , 5×10^{-2} , 10^{-1} and 1.0

 $m_{Z'}=15[MeV], g_{Z'}=3.0\times10^{-4}, g_{\chi}=5.0\times10^{-2}$

 $\mathrm{m}_{\chi} [\mathrm{MeV}]$

 $m_{Z'}=15[MeV], g_{Z'}=3.0\times10^{-4}, g_{\chi}=0.001$

10

Ex: $m_{Z'} = 15 \text{ [MeV]}, g_{Z'} = 3 \times 10^{-4}$

 $m_{Z'}=15[MeV], g_{Z'}=3.0\times10^{-4}, g_{\chi}=0.1$

No intersection points

$m_{Z'}=15[MeV], g_{Z'}=3.0\times10^{-4}, g_{\chi}=1.0$

$$\epsilon = \left(\frac{2m_{\chi}}{m_{Z'}} - 1\right) \gtrsim 0$$

Resonance-enhanced DM annihilation cross section

 10^{-20} $g_{\chi} = 10^{-3}$ 10^{-21} 10^{-22} 10^{-23} $\begin{bmatrix} 1 & 1 \\ \sigma & c \end{bmatrix}$ $cm^3 s^{-11}$ 10^{-25} 10^{-26} 10^{-27} \leftarrow $\langle \sigma v \rangle$ early universe \frown $\langle \sigma v \rangle$ today universe $\langle \sigma \mathrm{v}
angle_{\mathrm{JUNO-DSNB-model-10-years}}$ 10^{-28} . 20100 30 507090 40 60 80 $\mathrm{m}_{\chi} [\mathrm{MeV}]$

 $g_{\chi} = 0.001, g_{Z'} = 0.0001$

Resonance-enhanced DM annihilation cross section

-> Fine-tune on the ratio $-\frac{1}{2}$

 $g_{\chi} = 0.01, g_{Z'} = 0.0001$

 $m_{\chi} \sim -$

*m*_{Z'} 2

$$\epsilon = \left(\frac{2m_{\chi}}{m_{Z'}} - 1\right) \gtrsim 0$$

Minor enhancement; not reachable by JUNO (10 years).

JUNO sensitivity and Sommerfeld effect

Define

 χ

$$S = \frac{\langle \sigma v \rangle_{Present-day}}{\langle \sigma v \rangle_{Early Universe}},$$

 \rightarrow S is the Sommerfeld factor, either the DM annihilation rate for s-wave or p-wave annihilation.

In the $U(1)_{L_{\mu}-L_{\tau}}$ model, how and why can we apply Sommerfeld?

$$S = ? \rightarrow \langle \sigma v \rangle_S = ?$$

The annihilation process through Z': $\chi \chi \to Z'Z' \to \nu \bar{\nu} \nu \bar{\nu} \bar{\nu}$.

Arnold Sommerfeld

JUNO sensitivity and Sommerfeld effect

In the early universe:

+ The DM velocity v_{rel} is high,

$$S = \frac{2\pi\alpha_{\chi}/\nu_{rel}}{1 - e^{-2\pi\alpha_{\chi}/\nu_{rel}}}; \alpha_{\chi} = \frac{g_{\chi}^2}{4\pi}$$

 $\rightarrow S \approx 1$

Jonathan L. Feng, Manoj Kaplinghat, and Hai-Bo Yu, PRL 104, 151301 (2010)

The Sommerfeld enhancement is absent due to small coupling constant, so JUNO is not able to probe this effect.

$$\begin{split} m_\chi \gg m_{Z'} \ \kappa_{rel} \gg m_{\chi'} \ \pi \alpha_\chi^2 \ \pi \alpha_\chi^2; \end{split}$$ For $m_\chi = 100$ MeV, $\alpha_\chi \sim 10^{-6}$ by thermal relic condition

In the present-day universe:

- + The coupling is too small $\alpha_{\chi} \ll v_{rel}, v_{rel} = 10^{-3}$
- $\rightarrow \text{ Not satisfy the Coloumb limit} \\ \text{below:} \quad \alpha_{\chi} \gg v_{rel} \rightarrow S = \frac{2\pi\alpha_{\chi}}{v_{rel}} \\ \end{array}$

 $m_{\gamma} \gg m_{Z'}$ $\langle \sigma v_{rel} \rangle \approx \frac{\pi \alpha_{\chi}^2}{2m_{\gamma}^2};$

DM with a mass of 10 GeV- 10 TeV.

To satisfy the thermal relic condition: α_{χ} scales linearly with m_{χ}

JUNO cannot probe the Sommerfeld enhancement due to its operating energy range; higher-energy indirect detection experiments like **IceCube** are better suited for this.

—> work under progress

Summary

energy range of the JUNO detector.

> Due to the resonance-enhanced effect, the predicted $\langle \sigma v \rangle$ in the galactic halo is testable by the JUNO detector under very fine-tuned mass ratio between m_{γ} and $m_{Z'}$.

> JUNO cannot probe the Sommerfeld enhancement due to its operating energy range. On the other hand, IceCube experiment will be able to test this effect.

> Within $U(1)_{L_{\mu}-L_{\tau}}$ model, a comprehensive analysis of $\langle \sigma v \rangle$ in the early Universe and present-day Universe were performed for DM mass between 15 MeV and 100 MeV, which is within the operating

Thank you for your listening **Discussion and Q&A**

Backup slides

Data Using from

Article

On Effective Degrees of Freedom in the Early Universe

Lars Husdal

Department of Physics, Norwegian University of Science and Technology, N-7491 Trondheim, Norway; lars.husdal@ntnu.no

Academic Editor: Emilio Elizalde

Received: 20 October 2016; Accepted: 8 December 2016; Published: date

The annihilation process through $Z': \chi \bar{\chi} \to Z' \to \nu \bar{\nu}$.

Here we did not show the WIMP particles with canonical $\langle \sigma v \rangle \sim 3 \times 10^{-26} \text{cm}^3 \text{s}^{-1}$

