Flavor Equilibration of Supernova Neutrinos: Exploring the Dynamics of Slow Modes Based on: Padilla-Gay et al. (2025), arXiv:2505.11588

陳恒皓Chen, Heng-Hao

2025 NCTS, The Future is Whispering Institute of Physics, Academia Sinica

Collaborators: Ian Padilla-Gay(SLAC) Sajad Abbar(MPP) Meng-Ru Wu(ASIOP) Zewei Xiong(GSI)

2025 Jun. 26

Outline

- Introduction
- Equation of motion
- Vacuum oscillations
- Fast conversions
- Slow conversions
- Summary

- 99% of the output energy in Core-Collapse Supernova released in form of neutrino
- Neutrino dominant Core-Collapse Supernova dynamics
 - Cross-sections are flavor depentent
 - Shock revival
- Proton-neutron ratio
 - Nucleosynthesis in heavy elements

Janka, A&A 368, 527-560 (2001)

- 99% of the output energy in Core-Collapse Supernova released in form of neutrino
- Neutrino dominant Core-Collapse Supernova dynamics
 - Cross-sections are flavor depentent
 - Shock revival
- Proton-neutron ratio
 - Nucleosynthesis in heavy elements

Janka, A&A 368, 527-560 (2001)

- 99% of the output energy in Core-Collapse Supernova released in form of neutrino
- Neutrino dominant Core-Collapse Supernova dynamics
 - Cross-sections are flavor depentent
 - Shock revival
- Proton-neutron ratio
 - Nucleosynthesis in heavy elements

Ehring et al., Phys.Rev.Lett. 131 (2023) 6, 061401

- 99% of the output energy in Core-Collapse Supernova released in form of neutrino
- Neutrino dominant Core-Collapse
 Supernova dynamics
 - Cross-sections are flavor depentent
 - Shock revival
- Proton-neutron ratio
 - Nucleosynthesis in heavy elements

Janka, A&A 368, 527-560 (2001)

- Density matrix
 - Weak-interaction basis
 - Two-flavor for simplification
 - Flavor mixing in off-diagonal terms
- Translational symmetry in x, y, and axial symmetry in z are assumed

$$i(\partial_t + v_z \partial_z)
ho_{E,v_z} = [\mathrm{H},
ho_{E,v_z}]$$

- Forward scattering
 - Momentum state unchanged
 - $\circ \mathcal{O}(G_F)$

 $+ \mathcal{C}$ Non-forward scattering • Momentum state changed $\circ \mathcal{O}(\mathrm{G}_\mathrm{F}^2)$

 $ho_{E,v}(x,t) = egin{pmatrix}
ho_{ee} &
ho_{ex} \
ho_{e\pi}^* &
ho_{r\pi} \end{pmatrix}$

- Density matrix
 - Weak-interaction basis
 - Two-flavor for simplification
 - Flavor mixing in off-diagonal terms
- Translational symmetry in x, y, and axial symmetry in z are assumed

$$i(\partial_t + v_z \partial_z)
ho_{E,v_z} = [\mathrm{H},
ho_{E,v_z}]$$

- Forward scattering
 - Momentum state unchanged
 - $\circ \mathcal{O}(G_F)$

 Non-forward scattering Momentum state changed $\circ \mathcal{O}(\mathrm{G}_\mathrm{F}^2)$

 $ho_{E,v}(x,t) = egin{pmatrix}
ho_{ee} &
ho_{ex} \
ho^* &
ho_{rr} \end{pmatrix}$

- Density matrix
 - Weak-interaction basis
 - Two-flavor for simplification
 - Flavor mixing in off-diagonal terms
- Translational symmetry in x, y, and axial symmetry in z are assumed

$$i(\partial_t + v_z \partial_z)
ho_{E,v_z} = [\mathrm{H},
ho_{E,v_z}]$$

- Forward scattering
 - Momentum state unchanged
 - $\circ \mathcal{O}(G_F)$

 Non-forward scattering Momentum state changed $\circ \mathcal{O}(\mathrm{G}_{\mathrm{F}}^2)$

 $ho_{E,v}(x,t) = egin{pmatrix}
ho_{ee} &
ho_{ex} \
ho_{ex} &
ho_{rr} \end{pmatrix}$

$i(\partial_t + v_z \partial_z) ho_{E,v_z} = [\mathrm{H}, ho_{E,v_z}] + i \mathcal{C}$

• Forward scattering

- Momentum state unchanged
- $\circ \mathcal{O}(G_F)$

Non-forward scattering • Momentum state changed $\circ \mathcal{O}(\mathrm{G}_\mathrm{F}^2)$

Self-interaction Hamiltonian

Non-forward scattering

 Momentum state changed
 \$\mathcal{O}(G_F^2)\$

Vacuum oscillations

$$\mathrm{H}_{\mathrm{vac}} = rac{\omega_E}{2}egin{pmatrix} -\cos 2 heta & \sin 2 heta\ \sin 2 heta & \cos 2 heta \end{pmatrix}$$

 θ : mixing angle, $\omega_E = rac{\Delta m^2}{2E}: ext{vacuum frequency},$ Δm^2 : neutrino mass squared differences

 $\omega_E > (<)0$: normal(invert) mass ordering

$$P_{ee}\equivrac{
ho_{ee}(t)}{
ho_{ee}(t=0)}=1-\sin^22 heta\sin^2(rac{\omega_E}{2}t)$$

• Vacuum Hamiltonian

• Kilometer scale

 ν_x

 misalignment between mass-eigenstate and flavor-eigenstates

- When neutrino number density is large
 - Vacuum Hamiltonian could be ignore

$$i(\partial_t + v_z \partial_z)
ho_{E,v_z} = [\mathrm{H}_{
u
u}(v_z),
ho_{E,v_z}]$$

$[e_{E,v_z}]$

- When neutrino number density is large
 - Vacuum Hamiltonian could be ignore

$$i(\partial_t+v_z\partial_z)
ho_{E,v_z}=[\mathrm{H}_{
u
u}(v_z),
ho_{u_z})$$

$$\mathrm{H}_{
u
u}(v_z) = \sqrt{2}\mathrm{G}_\mathrm{F}\int\mathrm{d}v'(
ho_{v_z'}-ar
ho_{v_z'})(1-v_z\cdot v_z')$$

$[\mathcal{D}_{E,v_z}]$

- When neutrino number density is large
 - Vacuum Hamiltonian could be ignore

$$i(\partial_t + v_z \partial_z)
ho_{E,v_z} = [\mathrm{H}_{
u
u}(v_z),
ho_z)$$

$$\mathrm{H}_{
u
u}(v_z) = \sqrt{2}\mathrm{G}_\mathrm{F}\int\mathrm{d}v'(
ho_{v_z'}-ar
ho_{v_z'})(1-v_z\cdot v_z')$$

$[\mathcal{D}_{E,v_z}]$

• velocity dependent

- When neutrino number density is large
 - Vacuum Hamiltonian could be ignore

$$i(\partial_t + v_z \partial_z)
ho_{E,v_z} = [\mathrm{H}_{
u
u}(v_z),
ho_z)$$

$$H_{\nu\nu}(v_z) = \sqrt{2} G_F \int dv' (\rho_{v'_z} - \bar{\rho}_{v'_z}) (1 - v_z \cdot v'_z)$$
• Ambient (anti)neutrino

$[\mathcal{D}_{E,v_z}]$

• velocity dependent

on-linearity

$$egin{aligned} &i(\partial_t+v_z\partial_z)
ho_{E,v_z}=[\mathrm{H}_{
u
u}(v_z),
ho_{E,v_z}]\ &\mathrm{H}_{
u
u}(v_z)=\sqrt{2}\mathrm{G}_\mathrm{F}\int\mathrm{d}v'(
ho_{v_z'}-ar
ho_{v_z'})(1-v_z\cdot v_z') \end{aligned}$$

- Self-interaction Hamiltonian
 - velocity dependent
 - ambient (anti)neutrino
 - Non-linearity

$$egin{aligned} &i(\partial_t+v_z\partial_z)
ho_{E,v_z}=[\mathrm{H}_{
u
u}(v_z),
ho_{E,v_z}]\ &\mathrm{H}_{
u
u}(v_z)=\sqrt{2}\mathrm{G}_\mathrm{F}\int\mathrm{d}v'(
ho_{v'_z}-ar
ho_{v'_z})(1-v_z\cdot v'_z) \end{aligned}$$

- Self-interaction Hamiltonian
 - velocity dependent
 - ambient (anti)neutrino
 - Non-linearity

$$egin{aligned} &\langle P_{ee}
angle_z(t) = rac{\int \mathrm{d}z \, \mathrm{d}v_z
ho_{ee}(z,v_z,t) g_
u(v_z)}{\int \mathrm{d}z \, \mathrm{d}v_z
ho_{ee}(z,v_z,t=0) g_
u(v_z)} \ ullet g_
u(v_z) : ext{ angular distribution function} & lpha \equiv rac{n_{ar
u_e}}{n_{
u_e}} \end{aligned}$$

$$egin{aligned} &i(\partial_t+v_z\partial_z)
ho_{E,v_z}=[\mathrm{H}_{
u
u}(v_z),
ho_{E,v_z}]\ &\mathrm{H}_{
u
u}(v_z)=\sqrt{2}\mathrm{G}_\mathrm{F}\int\mathrm{d}v'(
ho_{v'_z}-ar
ho_{v'_z})(1-v_z\cdot v'_z) \end{aligned}$$

- Self-interaction Hamiltonian
 - velocity dependent
 - ambient (anti)neutrino
 - Non-linearity

$$egin{aligned} &\langle P_{ee}
angle_z(t) = rac{\int \mathrm{d}z \ \mathrm{d}v_z
ho_{ee}(z,v_z,t) g_
u(v_z)}{\int \mathrm{d}z \ \mathrm{d}v_z
ho_{ee}(z,v_z,t=0) g_
u(v_z)} \ egin{aligned} & egin{aligned} & eta_v(v_z) \ & eta_v(v_z)$$

• Steady-state on coarse-grained level is reached at different α for neutrino and antineutrino

Wu et al., 0.1103/physrevd.104.103003

Does it always happen?

• Steady-state on coarse-grained level is reached at different $\, lpha \,$ for neutrino and antineutrino Wu et al., 0.1103/physrevd.104.103003

Does it always happen? NO.

• Steady-state on coarse-grained level is reached at different $\, lpha \,$ for neutrino and antineutrino Wu et al., 0.1103/physrevd.104.103003

Does it always happen? NO.

- Electron lepton number crossing
 - (ELN crossing)

$$G_
u(v_z)\equiv
ho_{ee}(v_z)-ar
ho_{ee}(v_z)$$

• Steady-state on coarse-grained level is reached at different α for neutrino and antineutrino Wu et al., 0.1103/physrevd.104.103003

$$i(\partial_t+v_z\partial_z)
ho_{E,v_z}=[\mathrm{H}_{
u
u}(v_z),
ho_{E,v_z}]$$

$$\mathrm{H}_{
u
u}(v_z) = \sqrt{2}\mathrm{G}_\mathrm{F}\int\mathrm{d}v'(
ho_{v_z'}-ar
ho_{v_z'})(1-v_z\cdot v_z')$$

- Self-interaction Hamiltonian
 - velocity dependent
 - ambient (anti)neutrino
 - Non-linearity

- (ELN cross

Condition to triger the conversion

ing)
$$G_{
u}(v_z) \equiv
ho_{ee}(v_z) - ar{
ho}_{ee}(v_z)$$

• Steady-state on coarse-grained level is reached

• Generally the vacuum term could not be ignored

$$i(\partial_t + v_z \partial_z)
ho_{E,v_z} = [\mathrm{H}(v_z),
ho_{E,v_z}]$$

$$\mathrm{H}(v_z) = \mathrm{H}_{\mathrm{vac}} + \mathrm{H}_{
u
u}(v_z)$$

• ELN crossing NOT required

$$G_
u(v_z)\equiv
ho_{ee}(v_z)-ar
ho_{ee}(v_z)$$
 .

- Half-gaussian angular spectrum
 - Forward-peaked
 - \circ outside the ν sphere

• Generally the vacuum term could not be ignored

$$i(\partial_t + v_z \partial_z)
ho_{E,v_z} = [\mathrm{H}(v_z),
ho_{E,v_z}]$$

$$\mathrm{H}(v_z) = \mathrm{H}_{\mathrm{vac}} + \mathrm{H}_{
u
u}(v_z)$$

• Generally the vacuum term could not be ignored

$$i(\partial_t + v_z \partial_z)
ho_{E,v_z} = [\mathrm{H}(v_z),
ho_{E,v_z}]$$

$$\mathrm{H}(v_z) = \mathrm{H}_{\mathrm{vac}} + \mathrm{H}_{\nu\nu}(v_z)$$

- Steady state
 - \circ not sensitive to ω_E
 - \circ depend on lpha

$\alpha = 0.925$

$ \omega_E = -0.004$
$\omega_E = -0.006$
$ \omega_E = -0.008$
$ \omega_E = -0.010$
—— neutrinos
anti-neutrinos
····· empirical steady-state

• Empirical steady-states is described by a formula

$$egin{aligned} P_{ ext{emp}}(lpha) &= rac{1+\epsilon}{2} + rac{(1-lpha)^2}{4} \ ar{P}_{ ext{emp}}(lpha) &= rac{1-\epsilon}{2} + rac{(1-lpha)^2}{4} \end{aligned}$$

with

$$\epsilon \equiv rac{1-lpha}{1+lpha}$$

- Dependence of the mass ording contributes as much as a few percent
- Unaffected by initial conditions
- Applicable to future CCSN simulation

Scales of flavor conversions

• Macroscopic scale~[km] $H_
ho\sim {\cal O}(10)\,\,{
m km}$ \circ Density scale hight $H_arrho=arrho({
m d}arrho/{
m d}r)^{-1}$ Johns et al., arXiv:2503.05959

Summary

- Neutrino oscillation is important to the
 - Core-Collapse Supernova dynamics
 - Nucleosynthesis in heavy elements
- Fast conversions
 - Self-interaction Hamiltonian only
 - Required electron-lepton-number crossing
- Slow conversions
 - Include both vacuum and self-interaction Hamiltonians
 - NOT required electron-lepton-number crossing
 - Empirical formula could be implemented in future CCSN simulations

References

- 1. George et al., arXiv:2409.08833
- 2. Zaizen et al., arXiv:2211.09343
- 3. Wu et al., arXiv:2108.09886
- 4. Pantaleone, doi:10.1016/0370-2693(92)91887-f
- 5. Shalgar, https://indico.nbi.ku.dk/event/1532/contributions/11439/attachments/3550/5488/shalgar.pdf
- 6. George et al., arXiv:2203.12866
- 7. Dasgupta, arXiv:2110.00192

Scales of flavor conversions

Scales of flavor conversions

- Macroscopic scale~[km]
 - \circ Density scale hight $H_{arrho} = arrho (\mathrm{d}arrho/\mathrm{d}r)^{-1}$
 - \circ Mean free path $L_{
 m MFP}$
- Mesoscopic scale~[cm]
 - Matter term $L_{\rm mat} = (\sqrt{2}G_F n_e)^{-1}$
 - \circ Self-interaction term $L_{\mathrm{SI}} = (\sqrt{2}G_F n_{
 u_e})^{-1}$

• Generally the vacuum term could not be ignored

$$i(\partial_t + v_z \partial_z)
ho_{E,v_z} = [\mathrm{H}(v_z),
ho_{E,v_z}]$$

$$\mathrm{H}(v_z) = \mathrm{H}_{\mathrm{vac}} + \mathrm{H}_{
u
u}(v_z)$$

- Without advection term $v_z \partial_z$ • Final state is deviate from equipartition
- Advection term $v_z \partial_z$, may change the final state to flavor equipartition on coarse-grained level

Angle distribution

