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Gravitational waves : Status
& Challenges



Detections thus far

I Over the past decade, the
Laser Interferometer Gravitational-wave Observatory (LIGO)
collaboration have made about 200 detections from binary gravitating
systems involving black holes and neutron stars.

I Ground based detectors: GWs with strain (magnitude) from 10−20 to
10−22 and frequencies in the hertz range.

I This corresponds to events involving 10 to 100 solar mass black holes

I Current (O4) run operates with the LIGO Hanford and Livingston
detectors (US), the Virgo detector (Italy) and KAGRA (Japan)



Forthcoming detections

Laser Interoferometer Space Antenna (LISA) (2030’s)

I 10−16 to 10−21 amplitude in 10−3 Hz range

I Extreme mass ratios, unbounded events

Pulsar Timing Arrays (PTA) (2020 - )

I 10−14 to 10−16 amplitude in 10−9 Hz range

I Super massive black holes, stochastic GW background

Future/planned detections –

I Unbound binary systems – a scattering problem

I Extreme mass ratios with M2
M1

<< 1.

I Gravitational waves from spacetime background



GW observables from EFT



The binary scattering/inspiral cannot be solved exactly.

We require perturbative solutions (expansion in small parameter)

There are two broad cases:

1. Small G expansions where

Distance >> Size
b >> R

⇒ GM1,2
c2b

<< 1

2. Self-force expansion in

λ = M1
M2

<< 1

Valid to all orders in G



Small G approximations

I Post-Newtonian (PN) approximation, which assumes

GM

c2b
≈ v2

c2 << 1

Follows from virial theorem (Kinetic energy = Potential energy);
Applicable in the early inspiral for the bound case

I PN: small v ,G; expansion up to v2n ⇒ n PN order

I Post-Minkowski (PM) approximation GM

c2b
<< 1.

I PM: small G; expansion to Gn ⇒ n PM order.
Applicable to bound/unbound cases, for all velocities

I In overlap of validity, PM and PN have consistent expansions.
Self-force results part of answer (0SF at 3PM and 4PM; 1SF at 5PM
and 6PM, etc.)



0PN 1PN 2PN 3PN 4PN 5PN 6PN 7PN

1PM ( 1 + v2 + v4 + v6 + v8 + v10 + v12 + v14 + . . . ) G1

2PM ( 1 + v2 + v4 + v6 + v8 + v10 + v12 + . . . ) G2

3PM ( 1 + v2 + v4 + v6 + v8 + v10 + . . . ) G3

4PM ( 1 + v2 + v4 + v6 + v8 + . . . ) G4

5PM ( 1 + v2 + v4 + v6 + . . . ) G5

6PM ( 1 + v2 + v4 + . . . ) G6

...



Pre-2019 developments

I Classical PM solutions of Einstein’s equations among earliest
attempted. 2PM solutions derived till 1980’s. Problem was not
tractable to higher orders due to ill defined integrals

I PN solutions were easier to derive, and favorable for creating bound
state waveform templates. Results were derived till 4PN (spinless)
and 2.5 PN (spinning)

[Currently up to 6PN (spinless), 3PN (spin)]
I Key observables of interest: Two body potential, momentum and

angular momentum change of objects, radiative observables.

I Potential has ‘conservative’ and ‘dissipative’ parts

I Conservative: Time symmetric part (under t→ −t).

I Dissipative: Time asymmetric part, due to radiation.

I Recent breakthroughs in higher PM orders from an unlikely place –
scattering amplitudes!



Binary black hole scattering: Widely separated

To see why, let’s consider two black holes moving from past to future

If very widely separated, they don’t interact



Binary black hole scattering: Leading interaction
As they get closer, they interact with small corrections to Newton’s law

The interaction through the gravitational potential is indicated through an
instantaneous exchange. The trajectory gets corrected from straight lines



Binary black hole scattering: Subleading interactions
Closer still, there are conservative interactions from the gravitational
potential, as well as gravitational wave radiation from dissipation

The red wave is the emitted radiation



Scattering amplitudes

This is beginning to look a lot like scattering amplitudes

Ŝ = 1 + iT̂ is the S-matrix,
T̂ gives the scattering amplitude

|out〉 = Ŝ|in〉

Expectation values of a radiative
observable O

〈out|O|out〉 = 〈in|Ŝ†OŜ|in〉

will produce an outgoing radiation
state |k〉

Lastly, the blob are possible loop contributions. A n-loop exchange gives a
Gn+1 correction to the scattering (0-loop is also called tree level).

Thus we can get PM results. The major issue : All of this is quantum, and
we want classical physics!



Effective Field Theory for gravitational waves
The thing that saves the program are relevant length scales in the
problem, that allow us to extract classical observables

I The black holes/compact objects are widely separated (b >> R)

I Well approximated by point particles, with additional corrections.

I The other consequence is a large angular momentum for the system

J ∼ b× p >> 1

I As a result, we have the correspondence principle for incoming and
outgoing states (|in1,2〉 and |out1,2〉), with a (nearly) continuous
spectrum from large quantum numbers.

I Classical external states also require no new particle production.

I For objects with radii larger than their de Broglie wavelength

R >> λ = ~
p
,

we won’t have particle production effects from the vacuum



Effective Field Theory for gravitational waves

I There are gravitons exchanged in the scattering process. Due to large
b, its conjugate momentum q is small.

I Two possible types of exchanged gravitons with these length scales –
those that are instantaneous (called ‘potential’ gravitons) , and truly
radiative gravitons

I The emitted gravitational waves have a long wavelength for the same
reason (large b)

I We thus have a scattering with external states that have a large
energy (squared), let’s call it s. The exchanged momentum q is
small. The limit

s

q2 << 1

is called the eikonal approximation, and gives us eikonal amplitudes
from a general scattering amplitude.



Eikonal amplitude details [Review arXiv:2306.16488 [hep-th]]

I Call the incoming state |p1 , p2〉 = |p〉 and |p3 , p4〉 = |p′〉. From
Ŝ = 1 + iT̂ , we then find

〈p′|S|p〉 ∼ 1 + 2πiδ(|~p| − |~p′|)A

A = e2iδ(1 + 2i∆) when s

q2 << 1

with δ the eikonal phase and ∆ a quantum remainder.
I Ã, δ and ∆ expand in powers of G

iÃ0 = 2iδ0 , iÃ1 = 2iδ1 + 1
2(2iδ0)2 + 2i∆1 + · · ·

iÃ2 = (2iδ2 + 2iδ02i∆i) + 1
3!(2iδ0)3 + (2iδ0)(2iδ1) + · · ·

I The suffix indicates orders of GN in the exchange

δ0 ∼ G ; δ1 ∼ G2 ; δ2 ∼ G3

I Ã0, Ã1 and Ã2 give the tree level (G or 1PM), 1-loop (G2 or 2PM)
and 2-loop (G3 or 3PM) results respectively, with contributions
from...



I Tree level

I 1-loop

I 2-loop



δ2 properties

I The 2-loop amplitude has radiative exchanges between loops

I This gets realized as an imaginary contribution in the eikonal phase –
a coherent gravitational dressing

I A consequence of inelastic exchanges – energy, momentum and
angular momentum is lost in the process as gravitational waves.

I In the very low frequency limit, we have the result

eiIm2δ2 eiRe2δ2 −−−→
ω→0

exp[−∆κ
1 ] eiRe2δ2

I exp[−∆κ
1 ] is the Weinberg soft graviton dressing

∆κ
1 = 1

~

∫
~k
d3k

(
ai(k)f∗i (k)− a†i (k)fi(k)

)

fi(k) = ε∗i ,µν(k)Fµν(k) ; Fµν(k) =
∑
n

κpµnp
ν
n

k · pn − i0k



Gravitational wave observables

I Expectation values of graviton mode operators O with respect to the
vacuum will give gravitational wave observables.

I If we consider the low frequency limit of the eikonal operator, the
corresponding observable is the leading late time result (since
frequency and time are inversely related)

〈0|e−iRe2δ2e∆κ
1 Oe−∆κ

1 eiRe2δ2 |0〉 = 〈0|e∆κ
1 Oe−∆κ

1 |0〉 := 〈O〉∆κ
1

I We can consider the mode and momentum operators for the graviton
to derive the waveform and emitted momentum

hµν(x) =
∫
~k
d3k

[
ai(k)εi ,µν(k)eik.x + a†i (k)ε∗i ,µν(k)e−ik.x

]
I Waveform contribution : 2κ〈hµν〉∆κ

1
= WG

µν

Pα(x) =
∫
~k
d3k kαa†i (k)ai(k)

I 〈Pα〉∆κ
1

= Pα ;G and dEG

dω
= dP0 ;G

dω



δ3 and higher issues

I The generalization of the coherent state is not known beyond 2 loops

I The 2PM waveform has been derived from scattering amplitude
methods

I However , other radiative observables, and their derivation becomes
increasingly complicated to higher PM (and thus higher loop) orders

I There fortunately is a way to infer the low frequency dressing for
eikonal amplitudes from another related approach – the worldline
formalism

I This provides a roadmap to infer late time observables to higher PM
orders, and possibly generalize beyond the standard PM case to
self-force problems



Gravitational Dressing
& Radiative Observables



Following [KF, F-L. Lin JHEP 06 (2024) 15]

S = −
∫
d4x
√
−g

(
gµν∂µφ

∗∂νφ+m2φ∗φ
)

I Consider gµν = ηµν + 2κhµν with κ2 = 8πG and pµ = −i∂µ

to get S := −
∫
d4xφ∗

(
2Ĥ
)
φ

I Ĥ has a ‘free’ part and interactions to all orders in κ

2Ĥ(x , p) = p2 +m2 + 2κĤκ(x , p) + 4κ2Ĥκ2(x , p) +O(κ3)

I Worldline formalism (Schwinger): Identify
(
Ĥ(x , p)− iε

)−1
with

scalar field propagator (in background gravitational field)

I Basically follows from using

1
H

=
∫ ∞

0
dte−Ht , 〈p|x〉 ∼ e−

i
~p.x ,

and basic path integral representation methods (introduce an discrete
set of complete basis states, and take the continuum limit)



I This gives the external particle ‘propagator’ from an initial position to
final momentum〈

pf
∣∣∣ (Ĥ − iε)−1 ∣∣∣xi〉 =

∫ ∞
0

dT

∫ p(T )=pf

x(0)=xi
DpDx

exp
[
− i
~
p(T ).x(T ) + i

~

∫ T

0
dt
(
pẋ− Ĥ(x , p) + iε

)]
,

I This can’t be solved exactly, but we can do so about known solutions

I We consider

x(t)→ xi + pf t+ x(t) , p(t)→ pf + p(t) , x(0) = 0 = p(T )

I These correspond to fluctuations about eikonal trajectories, and will
provide a soft graviton dressing



I The propagator can be expressed as〈
pf
∣∣∣ (Ĥ − iε)−1 ∣∣∣xi〉 =

∫ ∞
0

dTe−i(pfxi+(p2
f+m2−iε)T )f(T )

I Consider xi = 0. With xi 6= 0 we get a orbital angular momentum
contribution. Relevant for subleading soft graviton factors at order κ
and their generalizations to O(κ2)

I Amputated propagator gives the dressing

lim
p2
f
→−m2

−i(p2
f +m2 − iε)

〈
pf
∣∣∣ (Ĥ − iε)−1 ∣∣∣xi〉 = lim

T→∞
f(T )

I f(T ) involves the double path integral over p(t) and x(t). The late
time limit gives the soft graviton dressing that we are after.

I We will consider the four external particle case as before
(f(T )→

∏4
i=1 fi(T )), and we consider soft graviton modes in terms

of the their creation and annihilation operators (hµν → ĥµν).



I The term from Hκ2 now gives a double soft graviton contribution.

I Subtlety: This dressing is manifestly invariant when the two gravitons
are collinear (which we assume).

I This means that if the two gravitons have four-momenta k and l
respectively, we have

k2 = 0 = l2 , k.l = 0

I We arrive at
4∏
i=1

fi(∞) = exp[−∆] = exp[−∆κ
1 −∆κ2

2 ]

I The ∆κ
1 is in terms of the Weinberg soft factor (as before), while

∆κ2
2 = 1

2~

∫
~k
d3k

∫
~l
d3l
[
a†i (k)a†j(l)Aij(k, l)− ai(k)aj(l)A∗ij(k, l)

+a†i (k)aj(l)B∗ij(k, l)− a
†
j(l)ai(k)Bij(k, l)

]
(2π)2δ(Ωk ,Ωl)



Factorization

I Using the Baker-Campbell-Haussdorf formula, we find

exp[−∆] = exp[−∆1] exp[−∆κ2
2 ] , ∆1 =

∞∑
n=0

∆κ2n+1
1

I This identifies a subleading double graviton correction for ∆κ
1 in the

coherent dressing

∆κ3
1 = 1

2~

∫
~k
d3k

∫
~l
d3l
[
a†i (k)

(
Aij(k, l)f∗j (l) +B∗ij(k, l)fj(l)

)
−ai(k)

(
A∗ij(k, l)fj(l) +Bij(k, l)f∗j (l)

)]
(2π)2δ(Ωk ,Ωl)

I We have a gravitational dressing derivation from the wordline, with
assumptions that are consistent with those for eikonal amplitudes .

I We thus infer that the 3 loop low frequency approximation for the
imaginary part of the eikonal phase takes the form

ei2δ3 −−−→
ω≈0

exp[−∆]eiRe2δ3



Expectation values

I This suffices to determine expectation values for purely gravitational
observables O

〈0|e∆1e∆κ2
2 Oe−∆κ2

2 e−∆1 |0〉 := 〈O〉∆

I Expectation values wrt e∆κ2
2 vanish classically.

I Non-vanishing results follow from canonical commutation relations.
However, since [a , a†] ∼ ~, this is subleading in the ~→ 0 limit.

I Hence the coherent part of the dressing contributes

〈O〉∆ = 〈O〉∆κ
1

+ 〈O〉∆κ3
1

I 〈O〉∆κ3
1

provide 2PM next-to-eikonal corrections to the known 1PM
Weinberg dressing results



2PM and higher PM observables

Proceeding as before for expectation values, we find

I Waveform contribution : 2κ〈hµν〉∆ = WG
µν +WG2

µν

I Emitted momentum: 〈Pα〉∆ = Pα ;G + Pα ;G2

I 〈Lαβ〉∆ = Lαβ ;G + Lαβ ;G2 ; 〈Sαβ〉∆ = Sαβ ;G + Sαβ ;G2

I WG
µν had the result of a linear memory effect – the permanent, late

time change in the spacetime after the scattering event.

I WG2
µν gives the non-linear memory effect, also known as the

Christodolou effect. Here, the initial emission of gravitons act a a
source for spacetime changes before asymptotic times. Our result
exactly matches this prediction, and provides the first derivation of
this effect from scattering amplitude methods.



Summary

I Gravitational wave observables can be derived from the classical limit
of scattering amplitudes.

I The effective field theory for binary black hole scattering involves
eikonal amplitudes with a gravitational dressing operator. However
their formal derivation beyond 2 loop order is not known.

I We used the worldline formalism to furnish this gravitational dressing,
in a low frequency expansion. This was used to derive radiative
observables, which inclue the waveform, emitted momentum and
angular momentum, to 3 loop order.

I The resulting dressing has the form of a squeezed coherent state.

I One of the planned directions is to better understand properties of
the squeezing operator in the context of black hole scattering



Thank You


