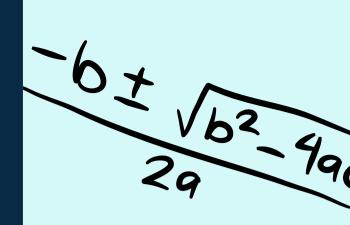
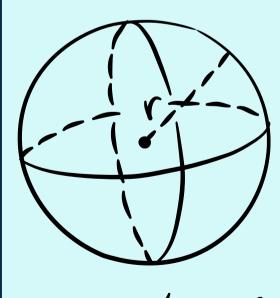


OUTLINE:

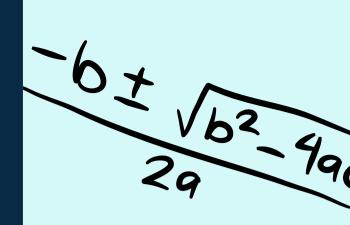
- 1. Topology overview
- 2. What is manifold
- Lie group and Lie algebra
 SO (3) and SU (2)

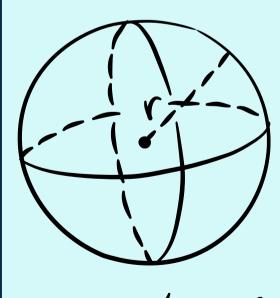




TOPOLOGY:

Before we talk about manifolds, let's talk about some simple topology.

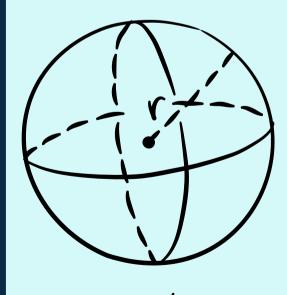


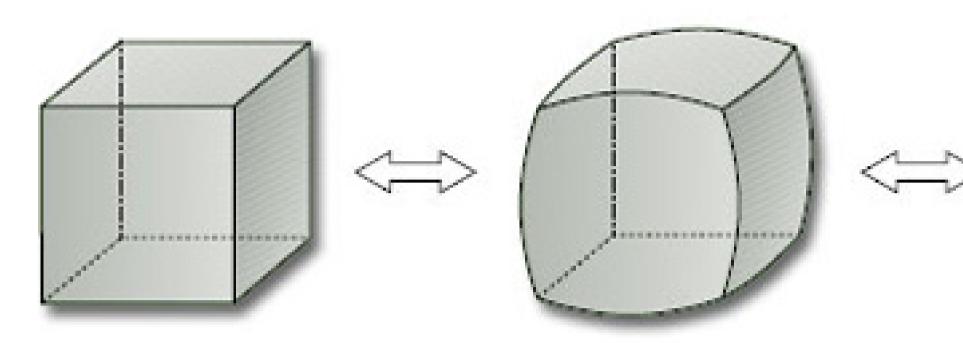


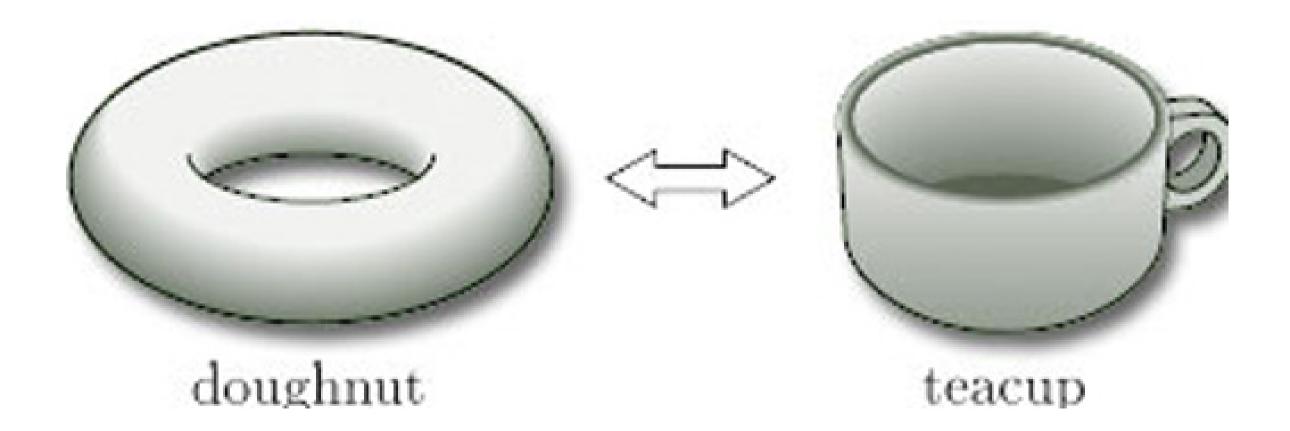
HOMEOMORPHISM:

Explain : a homeomorphism means two spaces can be changed into each other by stretching or bending, without cutting or gluing.

-6±



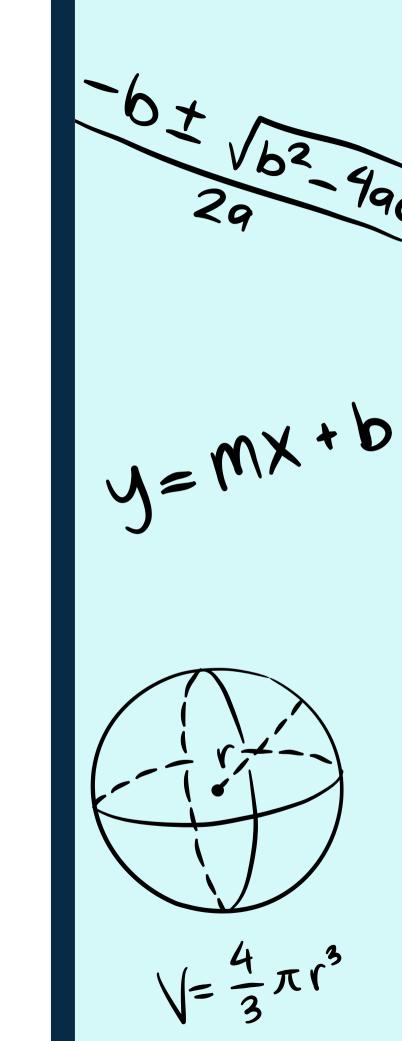






EUCLIDEAN SPACE:

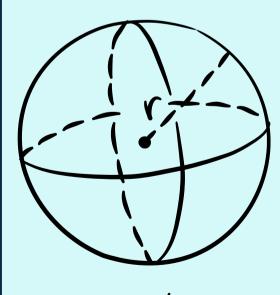
Euclidean space is a space made up of points consisting of n real numbers (a1,a2,...,an), denoted by **R**ⁿ, where the distance between points can be calculated using the familiar square root formula.

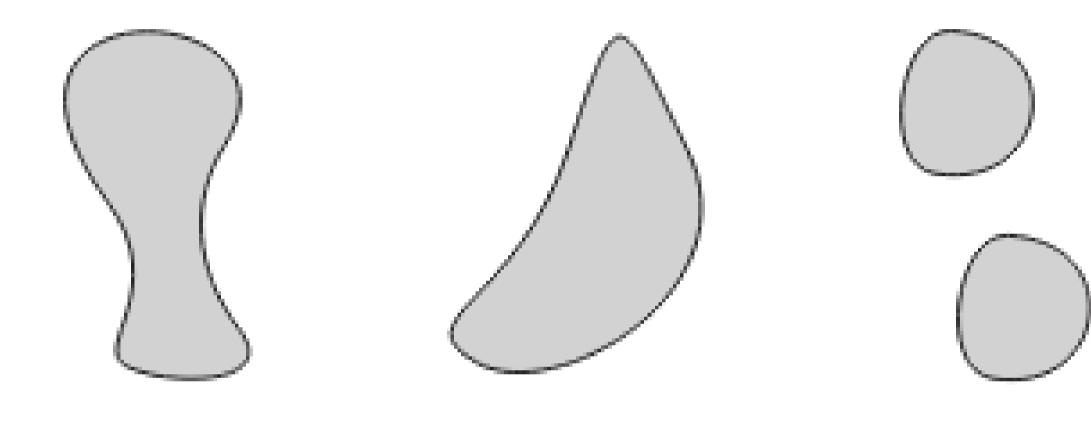


SIMPLY CONNECTED SPACE:

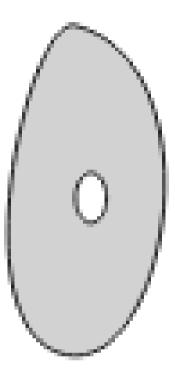
A space is simply connected if it's all in one piece and has no holes every loop can shrink to a point.

-6±





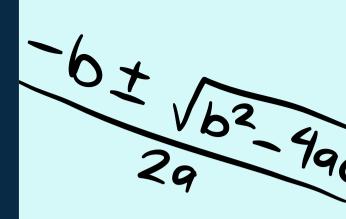
simply connected simply connected not simply connected

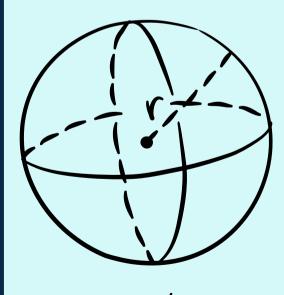


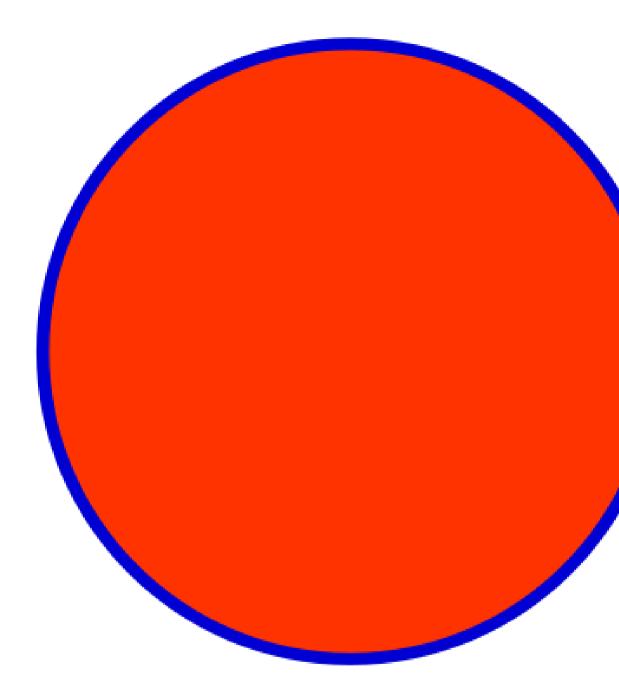
nnected not simply connected

OPEN SET

An open set is a set where, for every point inside it, you can find a small neighborhood (like a tiny ball) that is completely contained in the set.



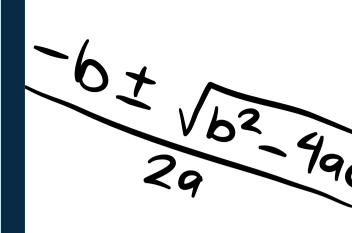




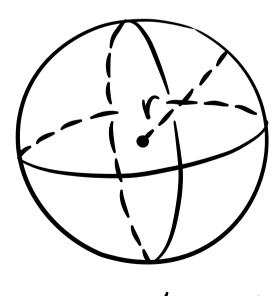
the blue circle represents the set of points (x, y) satisfying $x^2 + y^2 = r^2$. The red disk represents the set of points (x, y) satisfying $x^2 + y^2 < r^2$. The red set is an open set, the blue set is its boundary set, and the union of the red and blue sets is a closed set.

MANIFOLDS

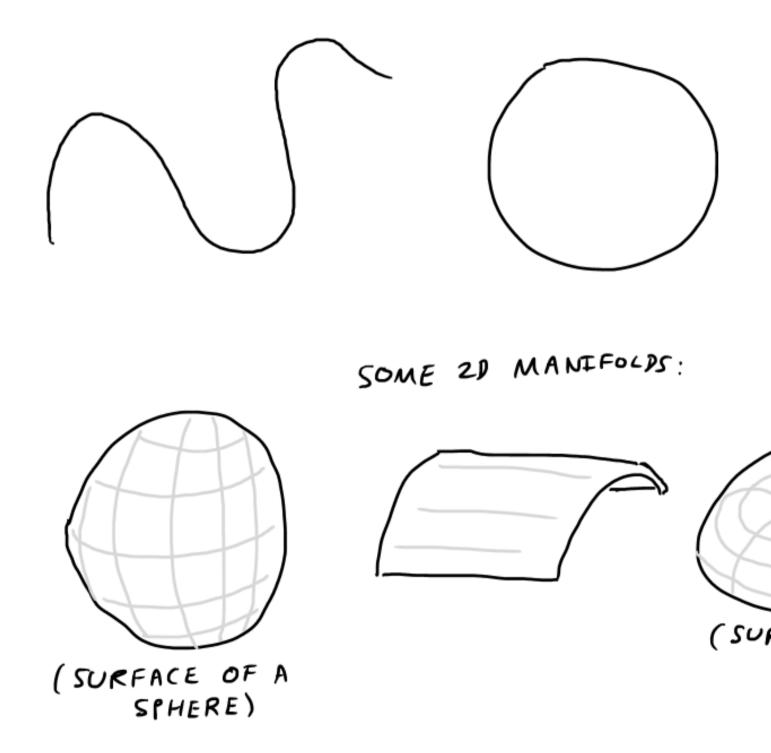
A manifold is a topological space that locally resembles Euclidean space near each point.



y = mx + b

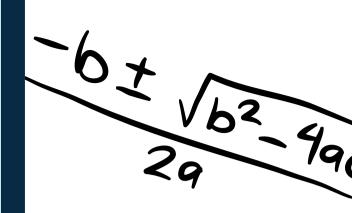


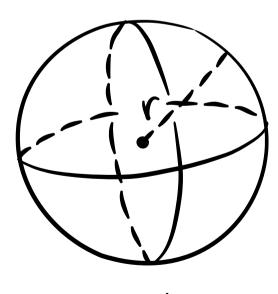
SOME 1D MANIFOLDS:



WHY STUDY MANIFOLDS?

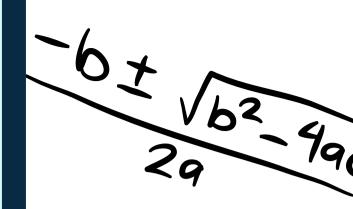
Because in general relativity and field theory, space is not always flat.

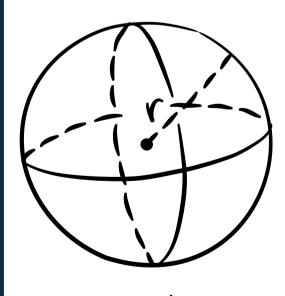


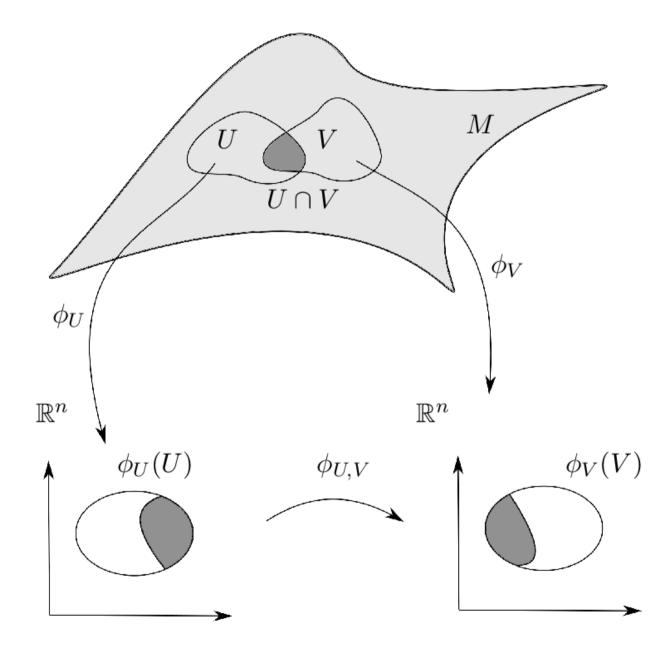


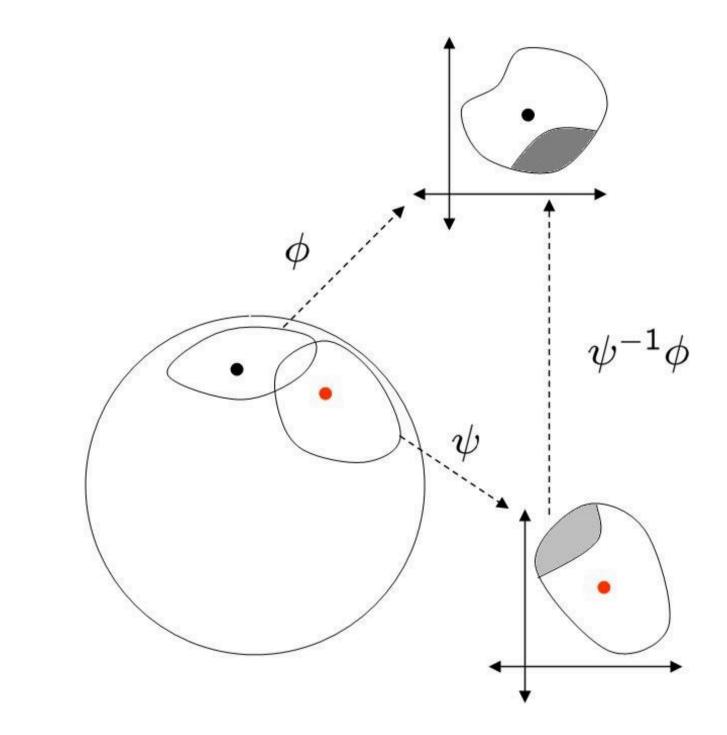
DIFFERENTIABLE MANIFOLD

A smooth manifold is a topological manifold with charts whose transition maps are infinitely differentiable.





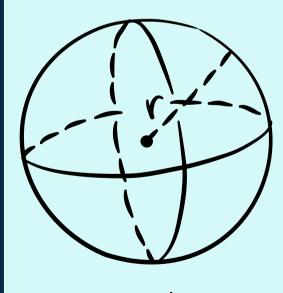




LIE GROUP:

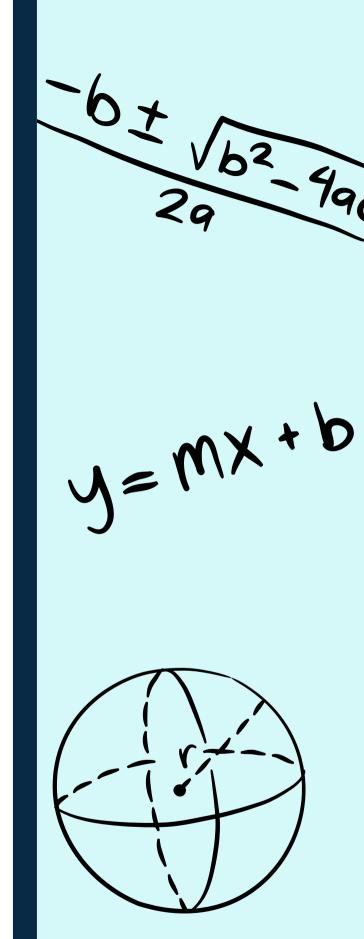
Lie group is a group that is also a differentiable manifold.

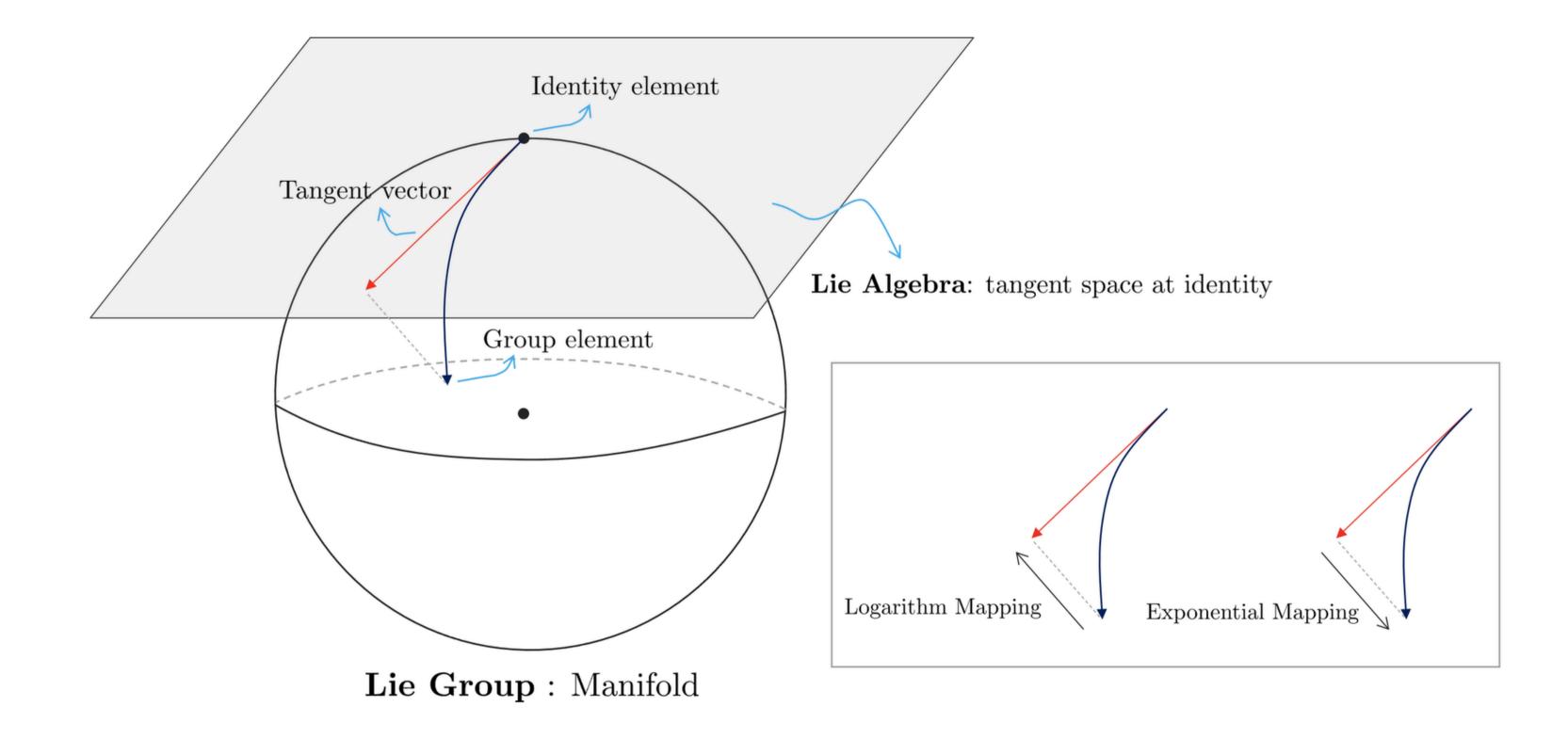
-6± 162



LIE ALGEBRA:

A Lie algebra describes the local linear structure of a Lie group. It is a vector space equipped with a binary operation called the Lie bracket.

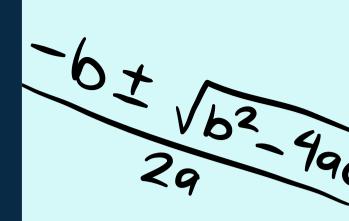


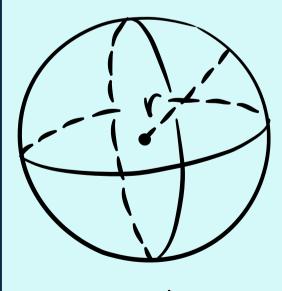


3D ROTATION GROUP (SO(3))

SO(3) is the group of all rotations in 3-dimensional space, all operations that rotate an object around the origin without changing its shape. For example : rotation about the positive z-axis

$$R_z(\phi) = egin{bmatrix} \cos \phi & -\sin \phi & 0 \ \sin \phi & \cos \phi & 0 \ 0 & 0 & 1 \end{bmatrix}.$$





SPECIAL UNITARY GROUP (SU(2))

The special unitary group of degree n, denoted SU(n), is the Lie group of n × n unitary matrices with determinal 1

$$\mathrm{SU}(2) = \left\{ egin{pmatrix} lpha & -\overlineeta\ eta & \overlinelpha \end{pmatrix}: \;\; lpha, eta \in \mathbb{C}, |lpha|^2 + |eta|^2 = 1
ight\} \;,$$

where the overline denotes complex conjugation.

Diffeomorphism with the 3-sphere S^3 [edit]

If we consider lpha,eta as a pair in \mathbb{C}^2 where lpha=a+bi and eta=c+di, then the equ

$$a^2 + b^2 + c^2 + d^2 = 1$$

iation
$$\left|lpha
ight|^{2}+\left|eta
ight|^{2}=1$$

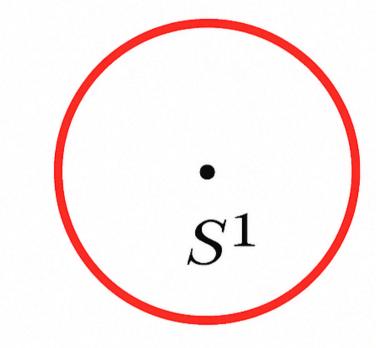
$$\frac{-6}{29} + \frac{1}{29} + \frac{1}{29}$$

$$y = mx + b$$

$$\int \frac{1}{100} + \frac{1$$

$$\sqrt{=\frac{4}{3}\pi r^3}$$

Property	SO(3)	SU(2)
Group Type	Rotation group in 3D space	Special unitary group of 2×2 matrices
Matrix Representation	3×3 real orthogonal matrices	2×2 complex unitary matrices with det = 1
Determinant	det = +1	det = 1
Lie Algebra	so(3)	$su(2) \cong so(3)$
Dimension	3	3
Тороlоду	S ³ / \mathbb{Z}_2 (3D real projective space)	S ³ (3D surface of 4D ball)
Simply Connected	No	Yes
Physical Application	Classical rotation (e.g., rigid body)	Quantum spin-½ particles
Relationship	Covered by SU(2)	Double cover of SO(3)



\mathbf{R}^1

REFERENCES:

1. <u>Topology picture</u> 、 <u>simple connect</u>

、 <u>openset</u>

- 2. <u>manifold 1</u> <u>manifold 2</u>
- 3. Lie group and Lie algebra
- 4. <u>SO (3)</u> and <u>SU (2)</u>

5. Image generated by Chatgpt



