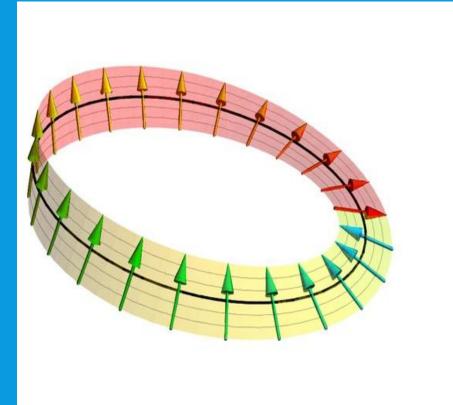
DIRAC SPINOR



WHAT IS A SPINOR ?

 A mathematical tool usually used in quantum mechanics to describe a particle with spin

• Main property: It change its sign after a full rotation (see the figure)

 Sometimes it calls: the square root of a vector (pauli vector and spinor)

SPINOR VS VECTOR

	spinor	vector
Main fields	Quantum mechanics	Classical mechanics
Rotate 360°	Change the sign of state	Returns to its original state
Transform in 3D space	Under SU(2) group	Under SO(3) group
Components in 3D space	3	2 (Weyl) or 4 (Dirac)

SO(N) AND SU(N)

The corresponding matrices have following properties

• SO(n): Special (determinant = +1), Orthogonal, n dimension

• SU(n): Special (determinant = +1), Unitary, n dimension

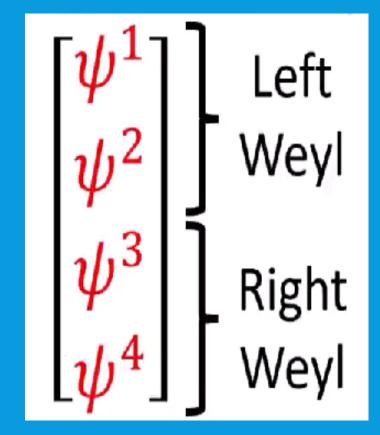
Difference between Orthogonal and Unitary: Real and complex

COMMON SPINOR

• Pauli spinor (3D space, 2 components)

• Weyl spinor (4D spacetime, 2 components)

• Dirac spinor (4D spacetime, 4 components)



DIRAC SPINOR

• One of the most typical spinor

 There are 4 components, consisted of left and right Weyl spinor (each with 2 components)

 Describing relativistic spin-¹/₂ particles, for particle and antiparticle

DIRAC FUNCTION

 Dirac spinor is originated from Dirac function (Dirac spinor is the solution of Dirac function)

$$(i\hbar\gamma^{\mu}\partial_{\mu}-mc)\psi = 0$$

 Ψ : Dirac spinor γ^{μ} : Dirac gamma matrices $\mu = 0,1,2,3$: spacetime indices m: mass of the particle

Originated from the Schrödinger equation

SPIN PROJECTION OPERATORS

- Operators used in quantum mechanics to project out a specific spin state of a particle from a general quantum state
- Generally used in spin-1/2 particles system
- Example: spin up and down projection operator for spin-1/2:

$$P_{+} = |\uparrow\rangle\langle\uparrow| = \frac{1}{2} \left(\mathbf{I} + \sigma_{z} \right)$$

$$P_{-} = |\downarrow\rangle\langle\downarrow| = \frac{1}{2} (I - \sigma_z)$$

CHIRAL (HELICITY) PROJECTION OPERATORS

Consider one spin projection operator acts on Dirac spinor

• This operator project out the left-handed and right-handed components of the Dirac spinor.

• Math form: left-handed and right-handed projections operators

$$P_L = \frac{1 - \gamma^5}{2}$$
, $P_R = \frac{1 + \gamma^5}{2}$

ENERGY PROJECTION OPERATORS

Consider one spin projection operator acts on Dirac spinor

• This operator project out the positive and negative energy solutions of the Dirac equation.

 Math form: positive (particle) or negative (antiparticle) energy projections operators

$$\Lambda_{\pm}(p) = \frac{1}{2m} \left(\gamma^{\mu} p_{\mu} \pm m \right)$$

REFERENCE

- https://zh.wikipedia.org/zh-tw/%E6%97%8B%E9%87%8F
- https://zh.wikipedia.org/wiki/%E7%8B%84%E6%8B%89%E5%85%8B%E6%97%8B%E9%87%8F
- https://physics.stackexchange.com/questions/440478/meaning-of-the-subscripts-l-r-for-the-twocomponent-weyl-spinors-phi-l-r
- https://sites.ualberta.ca/~gingrich/courses/phys512/node60.html

 https://www.youtube.com/watch?v=j5soqexrwqY&list=PLJHszsWbB6hoOo_wMbob6T44KM_ABZtBs (graph source)

