HYPERGEOMETRIC FUNCTIONS

112022111 林品融

What is hypergeometric function?

▶ We can see a ODE:

$$x(1-x)y''(x) + [c - (a+b+1)x]y'(x) - ab \ y(x) = 0$$

The gereral solusion of this ODE is:

$$y(x) = {}_2F_1(a,b;c;x)$$

$$=1+\frac{a\,b}{c}\,\frac{x}{1!}+\frac{a(a+1)b(b+1)}{c(c+1)}\,\frac{x^2}{2!}+\cdots,\quad c\neq 0,-1,-2,-3,\ldots,$$

We can define $(a)_n = a(a+1)(a+2)\cdots(a+n-1)$, $(a)_0 = 1$.

Using this notation, the hypergeometric function becomes:

$$_{2}F_{1}(a,b;c;x) = \sum_{n=0}^{\infty} \frac{(a)_{n}(b)_{n}}{(c)_{n}} \frac{x^{n}}{n!}.$$

Confluent hypergeometric function

▶ We can see a ODE:

$$xy'' + (c - x)y' - ay = 0$$

The gereral solusion of this ODE is:

$$y_1(x) = 1 + \frac{a}{c} \frac{x}{1!} + \frac{a(a+1)}{c(c+1)} \frac{z^2}{2!} + \dots \equiv M(a, c; x),$$

$$y_2(x) = x^{1-c} M(a-c+1, 2-c; x),$$

We can define $M(a, c; x) =_1 F_1(a; c; x)$

Using this notation, the hypergeometric function becomes:

$$_1F_1(a;c;x)=\Sigma_{n=0}^{\infty}rac{(a)_n}{(c)_n n!}z^n$$

Confluent hypergeometric function

► The relation to hypergeometric function

$$_1F_1(a;c;x)=\lim_{b o\infty}(_2F_1(a,b;c;x))$$

- ► The singularity of hypergeometric function
- $ightharpoonup _2F_1$ have three regular singularity $z=0,z=1,z
 ightarrow \infty$
- $ightharpoonup_1 F_1$ have one regular singularity z=0 one irregular singularity $z o\infty$
- The confluent hypergeometric function arises when two regular singularities of the Gauss hypergeometric equation merge into a single irregular singularity at infinity.
- ► This merging of singularities is not just mathematical it reflects the change in behavior of physical systems, for example, from oscillatory to exponential decay near infinity.

Relation to Other Special Functions

► There is some example:

$$F(a,b,b;x) = (1-x)^{-a}, \qquad F(\frac{1}{2},\frac{1}{2},\frac{3}{2};x^2) = x^{-1}\sin^{-1}x,$$

$$F(1,1,2;-x) = x^{-1}\ln(1+x), \qquad F(\frac{1}{2},1,\frac{3}{2};-x^2) = x^{-1}\tan^{-1}x,$$

$$\lim_{m\to\infty} F(1,m,1;x/m) = e^x, \qquad F(\frac{1}{2},1,\frac{3}{2};x^2) = \frac{1}{2}x^{-1}\ln[(1+x)/(1-x)],$$

$$F(\frac{1}{2},-\frac{1}{2},\frac{1}{2};\sin^2x) = \cos x, \qquad F(m+1,-m,1;(1-x)/2) = P_m(x),$$

$$F(\frac{1}{2},p,p;\sin^2x) = \sec x, \qquad F(m,-m,\frac{1}{2};(1-x)/2) = T_m(x),$$

Legendre polynomial

► Legendre differential equation:

$$(1 - x^2)y'' - 2xy' + \ell(\ell + 1)y = 0$$

hypergeometric function:

$$x(1-x)y''(x) + [c - (a+b+1)x]y'(x) - ab \ y(x) = 0$$

- ► Change variable: $z = \frac{1-x}{2}$
- ► By this change variable, we can Transforms into the hypergeometric equation

Another special function

$$P_{\ell}(x) = {}_{2}F_{1}\left(-\ell,\ell+1;1;\frac{1-x}{2}\right);$$
 Legendre

$$P_{\ell}^{m}(x) = \frac{(\ell+m)!}{(\ell-m)!} \frac{(1-x^{2})^{m/2}}{2^{m}m!} {}_{2}F_{1}\left(m-\ell,m+\ell+1;m+1;\frac{1-x}{2}\right);$$
 Associated Legendre

$$J_n(x) = \frac{e^{-ix}}{n!} \left(\frac{x}{2}\right)^n {}_1F_1(n+\frac{1}{2};2n+1;2ix);$$
 Bessel

$$H_{2n}(x) = (-1)^n \frac{(2n)!}{n!} {}_1F_1(-n; \frac{1}{2}; x^2) ;$$

Hermite

$$H_{2n+1}(x) = (-1)^n \frac{2(2n+1)!}{n!} x_1 F_1(-n; \frac{3}{2}; x^2) ;$$

$$L_n(x) = {}_1F_1(-n;1;x);$$
 Laguerre

$$L_n^k(x) = \frac{\Gamma(n+k+1)}{n!\Gamma(k+1)} {}_1F_1(-n;k+1;x);$$
 Associated Laguerre

$$T_n(x) = {}_2F_1\left(-n,n;\frac{1}{2};\frac{1-x}{2}\right)$$
. Chebyshev

Application I: Potentials(Spherical Coordinates)

► Laplace's equation(assume azimuthal symmetry):

$$\frac{\partial}{\partial r} \left(r^2 \frac{\partial V}{\partial r} \right) + \frac{1}{\sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial V}{\partial \theta} \right) = 0.$$

► We use separation of variables:

$$V(r, \theta) = R(r)\Theta(\theta)$$
.

► The solution is:

$$V(r,\theta) = \sum_{l=0}^{\infty} \left(A_l r^l + \frac{B_l}{r^{l+1}} \right) P_l(\cos \theta).$$

Application II: Harmonic oscillator

► Time-independent Schrödinger equation:

$$-\frac{\hbar^2}{2m}\frac{d^2\psi}{dx^2} + \frac{1}{2}m\omega^2x^2\psi = E\psi.$$

► The solution is:

$$\psi_n(x) = \left(\frac{m\omega}{\pi\hbar}\right)^{1/4} \frac{1}{\sqrt{2^n n!}} H_n(\xi) e^{-\xi^2/2}.$$