Cemtral Limit Theorem

Jen-Jie Hung

May 28, 2025

Jen-	lie	Hun	σ
			- 1

May 28, 2025

▶ < ∃ ▶</p>

< □ > < 四

Proof of one special case(Bernoulli distribution)

▶ < ⊒ ▶

Proof of one special case(Bernoulli distribution)

3 Application

< 円

() < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < ()

Theorem

Let X_1, X_2, \dots be a sequence of independent and identically distributed random variables, each having mean μ and variance σ^2 . Then the distribution of

$$\frac{X_1 + \dots + X_n - n\mu}{\sigma\sqrt{n}}$$

tends to the standard normal as $n \to \infty$. That is, for $-\infty < a < \infty$,

$$\mathsf{P}\left\{rac{X_1+\dots+X_n-n\mu}{\sigma\sqrt{n}}\leqslant \mathsf{a}
ight\}
ightarrow rac{1}{\sqrt{2\pi}}\int_{-\infty}^{\mathsf{a}} e^{-x^2/2}\mathsf{d}x ext{ as } n
ightarrow\infty$$

Example

Let $X_1, X_2, ..., X_n$ be Bernoulli random variables with $P\{X_i = 1\} = p, i = 1, 2, ..., n$, then the mean $\mu = np$, the variance $\sigma^2 = pq$. By Central Limit Theorem,

$$\frac{X_1 + \dots + X_n - n\mu}{\sigma\sqrt{n}}$$

tends to the standard normal as $n \to \infty$.

Jen-Jie Hung

Cemtral Limit Theorem

Example

< □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶
 May 28, 2025

Э

Proof of one special case(Bernoulli distribution)

3 Application

▶ < ⊒ ▶

Definition

The moment generating function $\mathsf{M}(t)$ of the random variable X is defined for all real values of t by

$$M(t) = \begin{cases} \sum_{x} e^{tx} p(x) & \text{if } X \text{ is discrete with mass function } p(x) \\ \int_{-\infty}^{\infty} e^{tx} f(x) dx & \text{if } X \text{ is continuous with density } f(x) \end{cases}$$

Example

Let X be a Bernoulli variable with $P{X=1} = p$, then

$$M(t) = e^{0 \times t} (1 - p) + e^{1 \times t} p = p e^{t} + 1 - p$$
(2)

(1)

・ロト ・ 日 ・ モ ト ・ 日 ・ うらく

Cemtral Limit Theorem	May 28, 2025	8/14

Lemma

Let $Z_1, Z_2, ...$ be a sequence of random variables having distribution functions F_{Z_n} and moment generating functions $M_{Z_n}, n \ge 1$, and let Z be a random variable having distribution function F_Z and moment generating function M_Z . If $M_{Z_n}(t) \rightarrow M_Z(t)$ for all t, then $F_{Z_n}(t) \rightarrow F_Z(t)$ for all t at which $F_Z(t)$ is continuous.

Remark

Moment generating function of normal random variable

$$M(t) = e^{\mu t + \frac{\sigma^2 t^2}{2}} \tag{2}$$

			2.40
Jen-Jie Hung	Cemtral Limit Theorem	May 28, 2025	9/14

Proof.

Let $X_1, X_2, ..., X_n$ be Bernoulli random variables with $P\{X_i = 1\} = p, i = 1, 2, ..., n$, then the mean $\mu = p$, the variance $\sigma^2 = pq$.

$$M_{\frac{X_{1}+\dots+X_{n}-n\mu}{\sigma\sqrt{n}}}(t) = \sum_{k=0}^{n} e^{\frac{(k-n\mu)t}{\sqrt{np(1-p)}}} C_{k}^{n} p^{k} (1-p)^{n-k}$$
$$= e^{\frac{-npt}{\sqrt{np(1-p)}}} \sum_{k=0}^{n} C_{k}^{n} (pe^{\frac{t}{\sqrt{np(1-p)}}})^{k} (1-p)^{n-k}$$
$$= e^{\frac{-npt}{\sqrt{np(1-p)}}} (pe^{\frac{t}{\sqrt{np(1-p)}}} + (1-p))^{n-k}$$

- 金田 - 金田 - 日

э

Proof.

By Taylor expansion
$$e^{\frac{t}{\sqrt{np(1-p)}}} \approx 1 + \frac{t}{\sqrt{np(1-p)}} + \frac{t^2}{2np(1-p)}$$
 if n large enough, so

$$M_{\frac{X_{1}+\dots+X_{n}-n\mu}{\sigma\sqrt{n}}}(t) \approx e^{\frac{-npt}{\sqrt{np(1-p)}}} \left(p\left(1+\frac{t}{\sqrt{np(1-p)}}+\frac{t^{2}}{2np(1-p)}\right)+(1-p)\right)^{n}$$

$$= e^{\frac{-npt}{\sqrt{np(1-p)}}} \left(1+\frac{\frac{pt\sqrt{n}}{\sqrt{p(1-p)}}+\frac{pt^{2}}{2p(1-p)}}{n}\right)^{n}$$

$$\approx e^{\frac{-npt}{\sqrt{np(1-p)}}} e^{\frac{pt\sqrt{n}}{\sqrt{p(1-p)}}+\frac{t^{2}}{2(1-p)}} = e^{\frac{t^{2}}{2(1-p)}}$$
(5)

Cemtral Limit Theorem

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ●

Proof of one special case(Bernoulli distribution)

- Noise in physic system
- O Survey

★ Ξ ► ★ Ξ ►

< □ > < 同

э

SHELDON ROSS, A First Course in Probability

★ Ξ ► ★ Ξ ►

< □ > < 四

э