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ISOLATED SINGULARITIES &
LAURENT SERIES

# Definition: Isolated Singularity

For a function f(z), the singularity 2 is an isolated singularity if f is analytic on the deleted disk 0 < |z — zy| < r for some r > 0.



ISOLATED SINGULARITIES &
LAURENT SERIES

Suppose that a function f is analytic throughout an annular domain R; < |z — zy| < R», centred at z;, and let C' denote any positively oriented simple closed
contour around zp and lying in that domain. Then, at each point in the domain, f(z) has the series representation
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& Theorem 9.5.1 Cauchy's Residue Theorem

Suppose f(z) is analytic in the region A except for a set of isolated singularities. Also suppose C' is a simple closed curve in A that doesn’t go through any of the
singularities of f and is oriented counterclockwise. Then

f f(2) dz =2mi Z residues of f inside C
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APPLICATION 1:
GREEN'S FUNCTION

Define the Green function
| (i

By using fourier transform

By using inverse-fourier transform
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APPLICATION 1:
GREEN'S FUNCTION
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Here, we can calculate the integral by Complex analysis and Residue Theorem

?g f(k)dk = 27i - Resg_j,
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And we can calculate the residue
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We can write down the solution
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APPLICATION 2:
SCATTERING AMPLITUDE

h .

In this formula,

S is the squared center-of-mass energy of the incoming particles.

M is the mass of an intermediate particle.

g is Coupling constant (interaction strength)

i€ Infinitesimal imaginary part ensuring causality and correct pole contour




APPLICATION 2:
SCATTERING AMPLITUDE
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