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-
Berry Phase

Consider Hamiltonian _
H (N'(1))

where \/(t) are time-dependent parameters.

Prepare the system in ground state and vary A(t) slowly along a closed
loop in the parameter space. By adiabatic theorem,

(A1) = €7 1 (A(1)))

where e/ is the phase difference, contributed by dynamical phase it and
Berry phase e/7(t)
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Figure: Parallel Transport
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For every A,

[¥) = U(t) [n(A(2)))

where U(t) is time dependent phase, |n())) is reference states.

Substitute into TDSE and set Eg = 0,

O \ny i

U U= —(n| N

Define Berry connection (Berry Potential):

O \n)

Ai(\) = —i(n] Y
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Then,
U(t) = exp <-i/A,~(A)A"dt>

Then, compute U(t) along the closed path

e = exp (—ij{ A;()\)d)\i)
C

which is the Berry phase, independent of time and depends only on the
path.
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Ai(X) is a one-form over the space of parameters, and contains some

gauge redundancy.

Choose _
In'(N)) = €' [n(N))
then 5
gy 9

exactly the same form of Gauge transformation.
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We might expect the physical information in 4; can be found in the gauge
invariant field strength, which is known as the curvature of A;

L 0A; OA

T =55 ~ aw

Then, we can rewrite Berry phase by Stokes’ theorem

e = exp (—i 7{ A,-(A)dA’) ~ exp <—i / f,-jds"f>
C S

where S is two-dimensional surface in the parameter space bounded by the
path C.
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Example: A spin in a Magnetic Field

Consider a spin in magnetic field B, with Hamiltonian
H=-B-3+B
where & are the Pauli matrices.
The two eigenvalues are
H[{) =0 and HIT)=2BI)

where |]) is ground state and |1) is excited state. Note that, these two
states are non-degenerate as long as B # 0.
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Treat the magnetic field as the parameter, \' = B
Express B in spherical polar coordinates with 6 € [0, 7] and ¢ € [0, 27),
the two normalised eigenstates are

et cosg e ?sin g
H)—( sin ¢ > and |1) = ( ~cos? )

Consider ||) state, the Berry connection are

50
—i{l 55 H)—O and Ay = —i{l] 57 |¢> —cos” 5
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The resulting Berry curvature,

L 0A, 0Ay 1.
.Fg(z)—WfTQS—ESInG

Back to cartesian coordinates,
Bk

3

Fii(B) = eju—
2|B

which is a magnetic monopole in the space of magnetic fields!
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The magnetic monopole sits at B = 0 with charge g = 1/2. The integral
of the Berry curvature over any two-dimensional sphere S? surrounding
the origin

/ F;dSY = 4ng = 2r
S2

Thus, the integral of the curvature over any closed surface must be
quantised in unit of 27

/f,-jds"f =21C

where C € Z is called the Chern number.

. Berry Phase T



:CUV
(@]

SK\\\\\\\
4//\

Figure: Integrating over S or S’ yields the same Berry phase modulo 27
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Example: Spectral Flow

Consider a solenoid of area A, carrying magnetic field B, and therefore
magnetic flux ® = BA.

[}

2mr

Outside the solenoid, B = 0, but vector potential exists Ay =

Now consider a charged quantum particle lie in a ring of radius r outside
the solenoid.
The energy eigenstates are

1 inp
= e nelZ
v \2mr

where ¢ is required to be single-valued.
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Plugging into TISE, the spectrum is

B2 ¢ \?2
En(d)) = 2mr2 <n + (1)0>

where ®¢ = 27wh/e is quantum of flux. Note that, if ® = N x ®,
En(Ndg) = L (n+N)?> neZ
2mr2
the spectrum is unaffected by the solenoid. But if ® = M x &g
2
2mr?

En(Mdg) = (n+M)? M¢z

the spectrum gets shifted physically.
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If N=1,
2

En(®o) = (n+1)?

2mr?
the spectrum is still same set, but the mapping state — energy has
changed. This relabeling is spectral flow.

If M =1/2,
1 h2 1\?
En <2¢0) -~ 2mr? (n—i— 2)

the energy values themselves shift.
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Thank youl!
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