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Abstract
Matrix Product State (MPS) and Density Matrix Renor-

malization Group (DMRG) serve as effective variational
techniques for investigating the low-energy states within
quantum many-body systems, utilizing the underlying en-
tanglement structures. By broadening the scope of MPS as
a data representation framework, it becomes more adept at
capturing intricate correlations within the system. Recent
advancements have expanded the utility of this approach to
efficiently address hydrodynamic equations, including the
complex dynamics of phenomena like turbulence, and can
compress data well[1] [5]. This study endeavors to adapt
these methodologies to Efimov physics, which is character-
ized by unique universal properties and discrete scale in-
variance. Within this context, two new distinct approaches
for generating the inverse of the required 1

R2 potential into
MPS, thereby reproducing discrete scaling behavior, have
been identified, alongside a detailed exploration of associ-
ated numerical challenges.

Introduction to MPS, MPO and DMRG

• Matrix product state (MPS):
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where σi are called physical indices and ai are called
bond indices. MPS can be used to represent functions
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where σi are 0 or 1. In this example, MPS compress the
data from 2N → 8N parameters for N qubits. Unfortu-
nately, most of functions need to do some approximation
such as cross approximation to represent them into low
bond dimension MPS.

• Matrix product operater (MPO):
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MPO can be used to represent operator such as second
order differential operator, it can write as the combination
of raising(Ŝ) and lowering operator(Ŝ†)

Ŝ − 2Î + Ŝ†
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This raising operator moves the function forward one unit.

Figure 1: MPS (left) and MPO (right)

• Density Matrix Renormalization Group (DMRG):
DMRG attempts to search the minimum expectation
value to find the ground state and ground state eigen-
value of the Hermitian operator, and used iterative meth-
ods such as Lanczos algorithm to solve the eigenvalue
problem in each local site [6]
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Figure 2: Sweeping site i by DMRG

Introduction to Efimov Physics
Efimov physics shows its three or more body bound

states are not bound in its sub-systems, also these states
are discrete scale invariance within a certain range[3] , and
this property relates to limit cycle in renormalization group
(RG)[2] , and their eigenvalues are in the ratio of e−2π/s0.
Here, we will focus on solving the Differential equation in
Efimov physics
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with the only imaginary scaling factor s0 ≈ 1.00624i that
causes Efimov states in the case of three identical bosons.

Method1
Second-order differential operator act on a constant vec-

tor can be exact zero in finite difference representation if
Neumann boundary condition is chosen, so a specific Her-
mitian operator can be established

−f (x) d
2

dx2
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It’s easy to see it has a zero eigenvalue with eigenvector
1

f (x)
. Therefore, if we know how to represent f (x) into MPS,

this operator can help us find MPS of its reciprocal function
by DMRG. In addition, it’s also a positive semi-definite ma-
trix, so it can also ensure the zero eigenvalue is the ground
state eigenvalue.

Figure 3: Average error compared to exact function for 20 qubits

Figure 4: Bond dimension of MPS in each site for 20 qubits

Method2
If we change the coordinate from

x =
∑
i
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Under this new coordinate, the functions that can be ex-
actly represented in low bond dimension MPS have also
changed

• x coordinate: xn, ekx and cos(kx)

• ex coordinate: (log(x))n, xk, and cos(k log(x))

for any k and positive integer n. Moreover, it changes the
way to represent operator into its MPO, and the second or-
der differential operator becomes
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Now, it becomes non-Hermitian, but DMRG requires Her-
mitian operator. However, if we transform ψ → e−0.5xψ, and
rewrite the Schrödinger equation
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where xi is the position and d is the distance between xi
and xi+1. Notice that changing to other coordinate except
ex is difficult to represent in Hermitian MPO, due to the fact
that differentiate other type of functions are not same to do
the finite difference, they are not just an overall factor differ-
ence like ex, and the approximation may break the Hermi-
tian property.

Result

Figure 5: Efimov energy with s0 = 2i using 10 qubits.

Figure 6: Efimov energy with s0 = 2i using 20 qubits.

Conclusions & Discussion

• Method1 in current situation can build 1
x+2−10 for 20 qubits

with good enough compression and precision, but still
can’t solve Eq. 9 even at higher s0. In the future, we will
also compare this method with the cross approximation.

• Method1 have many kinds of deformation, such as using
periodic boundary condition or using high order differen-
tial operator, but it’s not so important to compare them in
our case, because the bond dimension is not high here,
but it may be very different in other cases.

• Method2 gives the exact 1
x by changing the coordinate to

ex, and this method works better than Method1, although
it may have less bound states.

• Method2 is also very suitable to do the scaling transfor-
mation, and we hope we can use this property to see limit
cycle in Efimov states in the future.
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