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tl;dr:

In conformal invariant (1 + 1)-dimensional systems subjected to periodic dri-
ving, there are heating and non-heating phases characterized by linear growth
and oscillation of the entanglement entropy respectively [arXiv preprint ar-
Xiv:1805.00031]. In this work, we explore different setups without conformal
symmetry by employing Poincaré disk realizations for periodic driven systems
with SU(1,1) symmetry. We demonstrate these realizations by two examples: (a)
Bose-Einstein condensates (BEC) quenching dynamics and (b) periodic-driven
oscillators, both of which are experimentally accessible. For BEC quenching
dynamics, the heating and non-heating phases can be determined by both ex-
citations and entanglement entropy. On the other hand, for the driven coupled
oscillators, the phase diagram is enriched. We observed there are distinct pha-
ses inside the heating phase which can only be captured by the entanglement
measures.

Settings and Algebra [1]
SU(1,1): Three generators Ky, K1, Ko with the rules
Ko, K1| = 1Ky, |K1, Ko = —iKy, |Ky, Ko =ik

and can work out the unitary representation

K2 k,m) = k(k —1)|k,m), Kylk,m)=(m~+1)(m+2k)|k,m+1),
Kolk,m) = (m+k)|k,m), K_|km)=m(m+2k—1)k,m—1),

Setting: Taking from [1], we take [)(0)) = |GS of Hy), and drive the system by the Hamiltonian
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Take Hy ~ Ky and Hj is some linear combination of all generators, the evolution operator reads
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The problem narrows down to track the SU(1,1) coherent state (CS) on the Poincaré disk
D ={z=As|z € C,|z| < 1} and each SU(1,1) elements serve as Mdbius transformation (MT)
M on D. This allows us to:

1. Every cycle can be realized on PD(U; = My, Uy = M, U = MyM;)
2. By property of M'T":

M-z =

az+ [ _oz—oz*i\/z
5*Z+&*’ Tt = 25*

the fixed point can be different by the trace of MT A = Tr(/\/l)2 — 4, and MT has corresponding
different behaviors |1].
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This implies that when characterizing evolution, knowing one cycle = knowing n

cycle, and the trace of MT works as an important index.

BEC quenching dynamics [2,3,4]

Setting: Starting from interacting (controlled by Feshbach resonance) Bosonic Hamiltonian
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1. GS = BEC. MF (pairing k£ to —k excitations) gives H ~ =;. H (k)
H(k) = &(k) Ko + &1(k) K1 + &2(k) Ko

2. K works as counting excitations, K+ excites (resp. annihilates) the state.
3. Using the algebra, the trajectory of states on PD
(@ —ig)sin(et/2)
& cos(Et/2) + 1€y sin(Et/2)
with Tr(M) = 2008(\/58 — 7 — &3 t/2).

4. The stability directly determines the growth behavior of excitations: S =
(ng + 1) In(ng, + 1) — ng Inng,
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Periodic driven oscillators (PDOs) [5]

Settings: We coupled the system in the fashion of LHS

D ~D
2 1 D A) 1 D AD A A
H1=2pl + L2 + smw=qt + smw*gs + Cq14o

A

H = o 2
& 1 2,2 1 212
HOZQP,,%‘FQP,,%—I—QWCU q1+§mw q5

can be diagonalized just like CM (symm., anti-symm.)
H = Hy = Z?:l (2(W + Uz‘)f(o,z' + 2U7}f(1,i)
I‘}O — Z,?:l 2&)}%0’2'

1.GS =10)1/|0)o , Ky works as counting excitations, K+ excites (resp. annihilates) the state.

2. Unlike BEC, we have to separate two modes into two PDs, and each disk has their own evolution.
(Each MTs have to be counted)

Poincare disk evolution
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together determine the phase diagram:
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The stability does not directly determines the growth behavior of excitations
here. and the entropy and excitations are no longer related in the easy way as BEC.
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In(a(Th, T1)t)
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IH(Q(T[}, Tl)t)

IH(CE(TU, Tl )t)

a(To, Th)t + B(To, T1)

hyperbolic (> 2) a(Ty, Ty)t + B(To, 1) | a(To, Tyt + B(To, T1) | a(To, Ty)t + B(Ty, T1)

Only entanglement captures the difference of the trace of MT.
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What’s the difference?

 Two cases have similar behavior of scaling (EE and excitations), but PDO has finer structure on
phase diagram and is captured by entanglement.

« No conformal invariance assumed, only non-compactness of SU(1,1) (Different from but claimed in
1]).

o Unlike Floquet CFT, BEC quenching dynamics is experimentally realized in |2,3] and we expect
PDO can also be experimentally done as well.
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