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Introduction

Conclusions

➢ The phase match makes the generation process efficient, and the low 

decoherence rate results in a narrow biphoton linewidth. Thus, a high-rate source 

of narrow linewidth biphotons was achieved in this work.

➢ The high generation rate, together with the narrow linewidth, results in a spectral 

brightness of 1.1 × 106 pairs/s/MHz, which is better than all known results with 

all kinds of media.

➢ This method has been successfully applied to generate biphoton sources in cold 

atom systems and even directly within optical fibers, showcasing its versatility 

and potential impact across various platforms.

We employed the all-copropagating scheme in the double lambda type SFWM 

scheme for the first time. This configuration maintains a good phase-match 

condition in the SFWM process.

∆𝜙 = 𝐿(𝑘𝑝 − 𝑘𝑎𝑠 + 𝑘𝑐 − 𝑘𝑠) ∙ Ƹ𝑧

where L is the length of the atomic vapor, and 𝑘𝑝, 𝑘𝑐, 𝑘𝑎𝑠, and 𝑘𝑠 are the wave 

vectors of the pump and coupling fields and the anti-Stokes and Stokes photons.

The zero angle separation between the strong driving fields and the single photons 

enables a low decoherence rate in the Doppler-broadened media. The all-

copropagating scheme ensures a higher generation rate and also a longer temporal 

width (narrower biphoton linewidth). 

Fig. 2. Experimental setup of Double-Lambda-Type biphoton source.  
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Fig. 1. Transition scheme of the SFWM process. The SFWM in our transition level can be seen as 

a far detuned Raman transition and an EIT process.
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Fig 4. Transition scheme of the SFWM process. 
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Results of Double-Lambda SFWM 

0.01 0.1 1 10
0.0

0.1

0.2

0.3

0.4

0.5

0.6

R
ec

ip
ro

ca
l  

o
f 

 E
IT

  

S
p
ec

tr
al

  
L

in
ew

id
th

  
(m

s)

Coupling Power (mW)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

 

B
ip

h
o
to

n
  
T

em
p
o
ra

l 
W

id
th

  (
m

s)

 

0 5 10 156
0.6

0.8

1.0

1.2

1.4

1.6

S
p
ec

tr
al

 L
in

ew
id

th
 (

M
H

z)

Pump Power (mW)

Fig. 3.  (a) Biphoton wave packet.  (b) Conditional Auto-correlation.  (c) Tunable biphoton temporal width (Spectral 

linewidth) by varying Coupling power.  (d) Tunable Spectral linewidth by changing vapor cell temperature and 

Pump power. Green, cyan, blue, magenta, and red circles are the experimental biphoton data measured at the vapor 

cell temperatures of 38, 44, 53, 60, and 65 ℃ with different Pump power. Lines are the best linear fits.

Results of Diamond-Type SFWM
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Fig. 6.  (a) Biphoton wave packet when two-photon resonance for the atom with k795 ∙ v = 0.

 (b) Biphoton wave packet when two-photon resonance for the atom with k795 ∙ v = 460 MHz.  
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Fig 5. Experimental setup of Diamond-Type biphoton source.
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Biphoton generation has emerged as a pivotal tool in quantum research, offering the 

capability to produce heralded single photons. Leveraging the strong temporal 

correlation between two photons, one photon can be used as a trigger, and we can 

effectively use the second photon to conduct research in quantum information, 

quantum simulation, and communication. To generate biphotons, the mechanisms of 

spontaneous parametric down conversion in nonlinear crystals and SFWM in cold or 

hot atomic vapors are commonly used. In our study, we utilized the all-copropagating 

scheme, which maintains the phase-match condition, in the spontaneous four-wave 

mixing (SFWM) process to generate biphotons from a hot atomic vapor. 
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