
Machine-Learning enhanced Quantum 
State Tomography: Covariance matrix 
approach

Introduction Methodology

J.C. Rodríguez1, H.Y. Hsieh2 and R.K. Lee1,2 
1Department of Physics, National Tsing Hua University, Hsinchu 30013, Taiwan 
2Institute of Photonics Technologies, National Tsing Hua University, Hsinchu 30013, Taiwan

Reconstruction of states
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Conclusions

Quantum state reconstruction 
through homodyne 
measurements.


Utilization of single-mode 
covariance matrices as output 
for quadrature data.


QST has been tackled by MLE, 
density matrix reconstruction 
and direct parameter estimation.
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Two modes squeezing

Analyze KAGRA data for 
gravitational wave detection 
using squeezed light 
technology with Covariance 
matrix QST.

Perform QST for 
experimental homodyne 
detection data.

(entanglement!!!)

Training set 
490.000 quadrature seq.

10.000 covariance matrix

A single scan measurement effectively captures 
the quadrature sequence data, providing an 
accurate depiction of the quantum state.


Covariance matrix approach can deal with large 
Hilbert spaces while preserving high-precision 
feature extraction.

ρ =
c1S(ξ)ρvacS†(ξ)+

c2S(ξ)ρth(n1)S†(ξ)+
c3ρth(n2)

Uncertainty principle 
σ + iΩ ≥ 0Output: Covariance matrix


Characteristics: 
Positive definite (P.D)

No need of truncation

Finite sized elements
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