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Th@l\lssmg Baryon Problém

30% of baryons are missing!

Astronomers- think that they reside in the‘
diffuse gas, which is very low-density, of the=;
intergalactic medium (IGM) and undetectable. 3
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Solution: Dlspersmn ‘Measure from Fast RCIdIO Bursts (FRB)
What are FRBs? ’

DM - z relatign \
ST T S Nl i Significant amount of missing:baryons reside in the IGM
Most of them originated out of the Milky Way

The scatter of the data points relative to the
theoretical predicted average DM could be
~30 are localized : : P 5 e
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cold gas 1.7+0.4%

Observation Mllky Way

Fig. 1'shows the dls'trlbutlon of baryons in the universe

, Howto i |mprove DM,GM eshmqhon’?
DM, estlmated by scattering time

Scattering time (7)

Pulse broadening effect caused 'by

multipath propagation # the turbulence

of the plasma in'the vicinity of where
- FRB emits (Fig. 3).
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4. Unique ‘observable: Dispersion Measure (DM)

< How.many baryons are.in lin€' of 5|ght ’
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causetl by codsmological baryonic fluctuation
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How to quqnhfy the fluciuahon’? i

Count the foreground Ealames of- FRBs \within an .
aperture of radi f 1 Mpc! The radiusis chosen o)Y, the

typlcal halo size.

More foreground galawaIore baryons in IGM?
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568 pulsars , :
Observation NE20 Estimated Less foreground galaxy: Less baryons in IGM?
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DM, .. can be estimated by scattering
A '\ ;- ,
time from the empificak relation of the
pulsar, assuming  scattering only
happens in the:host galaxyFig. 4).
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Results' First statlstlcal evmlence of

cosmologlcal baryonl‘c fluctuation .

DM-z relation with our sample
. " .
Red and blue data represent FRB encounters
high (0 > 0) / low (o < 0) foreground ga'laxy ”
number density. Most of the red.data points are
above the theoretical predicted average D‘IVIIG&

and vice versa for the blue data points.
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baryonic fluctuation® -

DM excess:— galaxy density -

" DM etss incraases with foreground galaxy
numb‘r den5|ty with a statistica] significance of
p-value= 0.003 fer the correlation in Fig.6

-> First statistical evidence of cosmological

is the first
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Baryonic fluctuati
Wsing different radii*to calculatégalaxy density andi
test the p-value of the correlation (Fig.6). The
correlation becomes less significant (higher p-
values) when r > 1.5 Mpc, which indicates the
typical baryonic fluctuation scale of < 1.5 Mpc. It
measurement of the baryonic
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