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Time evolution operator for 1D DTQW
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Time evolution operator for 1D SSQW

U (01,02) = 1) R(02) 1 R(61)



2D DTQW
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Time evolution operator for 1D SSQW

U, (01,02) = TyR(61)T,R(02) T, R(61)T.



Ug = e " — Hy(61,02) = Y E(61,02)[x(61,062) - o] @ |k)(K]| .
k

Hy(01,02)



Ug = e " — Hy(61,02) = Y E(61,02)[x(61,062) - o] @ |k)(K]| .
k

Hy(01,02)

The dispersion relation is given by (Kitagawa, 2010)

cos E(01,02) = cos(01/2) cos(02/2) cos k — sin(01/2) sin(f2/2).



Topological Phases in Quantum Walks
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Non-Unitary/Non-Hermitian Quantum Walk
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(Regensburger et al (2012))
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PT-symmetry

In continuous systems, we have

Parity symmetry (Unitary)

P:z— —zandp— —p, P2=1

Time reveral symmetry (Anti-unitary)

T:t——t, p— —p, T — —x, and i — —i

such that

PT —symmetric Hamiltonian

(PT)H(PT) ' =H
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1D NH-SSQW
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1D NH-SSQW
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Quantum Walk and Entanglement
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Quantum Walk and Entanglement
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Quantum Walk and Entanglement

W) 4 = % (10)4 1) + 1) 410) )

TRANSMISSION EFFICIENCY!!! DETECTION EFFICIENCY!!!
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Quantum Walk and Entanglement
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Quantum Walk and Entanglement

W) ap = Sa5(8)10,0), Sap(B) = exp [ﬁ(azag —asap

IDEAL HOMODYNE DETECTION AT TELECOM \'s !l

)
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Quantum Walk and Entanglement
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Quantum Walk and Entanglement

0) 4y = % (10) 4 loa)  + 1) 4 [a2) )

Middle ground!! Useful Entanglement over 300 km
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Our beloved SSH
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Our beloved SSH
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Siblings of SSH (Even)
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Siblings of SSH (Odd)
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Other siblings of SSH Model
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Other siblings of SSH Model
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Other siblings of SSH Model
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Non-Hermitian topological phases and dynamical quantum
phase transitions: a generic connection

Longwen Zhou'© and Qiangian Du

Department of Physics, College of Information Science and Engineering, Ocean University of China, Qingdao 266100, People’s
Republic of China
* Author to whom any correspondence should be addressed.

E-mail: zhoulw13@u.nus.edu

Keywords: non-Hermitian physics, dynamical quantum phase transition, topological phases of matter

Abstract

The dynamical and topological properties of non-Hermitian systems have attracted great attention
in recent years. In this work, we establish an intrinsic connection between two classes of intriguing
phenomena—topological phases and dynamical quantum phase transitions (DQPTs)—in
non-Hermitian systems. Focusing on one-dimensional models with chiral symmetry, we find
DQPTs following the quench from a trivial to a non-Hermitian topological phase. Moreover, the
critical momenta and critical time of the DQPTs are found to be directly related to the topological
invariants of the non-Hermitian system. We further demonstrate our theory in three prototypical
non-Hermitian lattice models, the lossy Kitaev chain (LKC), the LKC with next-nearest-neighbor
hoppings, and the nonreciprocal Su—Schrieffer—Heeger model. Finally, we suggest a proposal to
experimentally verify the found connection by a nitrogen-vacancy center in diamond.
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Topological invariants in quantum walks
Andrzej Grudka,' Marcin Karczewski ®,” Pawel Kurzyriski ®,' Jan Wéjcik®,* and Antoni Wéjcik @'
Unstitute of Spintronics and Quantum Inf ion, Faculty of Physics, Adam Mickiewicz University, 61-614 Poznari, Poland
2International Centre for Theory of Quantum Technologies, University of Gdarisk, 80-309 Gdaiisk, Poland
3 Faculty of Physics, Adam Mickiewicz University, 61-614 Poznari, Poland

@ (Received 9 November 2022; accepted 9 February 2023; published | March 2023)

Discrete-time quantum walks (DTQWs) provide a convenient platform for a realization of many topological
phases in noninteracting systems. They often offer more possibilities than systems with a static Hamiltonian.
Nevertheless, researchers are still looking for DTQW symmetries protecting topological phases and for defini-
tions of appropriate topological invariants. Although the majority of DTQW studies on this topic focus on the
so-called split-step quantum walk, two distinct topological phases can be observed in more basic models. Here
we infer topological properties of the basic DTQWs directly from the mapping of the Brillouin zone to the Bloch
Hamiltonian. We show that for translation-symmetric systems they can be characterized by a homotopy relative
to special points. We also propose a topological invariant corresponding to this concept. This invariant indicates
the number of edge states at the interface between two distinct phases.

DOI: 10.1103/PhysRevA.107.032201
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Speeding Up Entanglement Generation by Proximity to Higher-Order Exceptional Points

Zeng-Zhao Li L2t Weijian Chen®,”" Maryam Abbasi 3 Kater W. Murch®® and K. Birgitta Whaley 12
'Department of Chemistry, University of California, Berkeley, California 94720, USA
ZBL’I‘kElﬂy Center for Quantum Information and Computation, Berkeley, California 94720, USA
Department of Physics, Washington University, St. Louis, Missouri 63130, USA

® (Received 13 October 2022; revised 29 June 2023; accepted 1 August 2023; published 8 September 2023)

Entanglement is a key resource for quantum information technologies ranging from quantum sensing to
computing. Conventionally, the I between two coupled qubits is established at the
timescale of the inverse of the coupling strength. In this Letter, we study two weakly coupled non-
Hermitian qubits and observe entanglement generation at a significantly shorter timescale by proximity to a
higher-order exceptional point. We establish a non-Hermitian perturbation theory based on constructing a
biorthogonal complete basis and further identify the optimal condition to obtain the maximally entangled

state. Our study of speeding up entanglement generation in non-Hermitian quantum systems opens new
avenues for harnessing coherent nonunitary dissipation for quantum technologies.

DOI: 10.1103/PhysRevLett.131.100202
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Unconventional quantum optics in topological
waveguide QED

M. Bello', G. Platero’, J. I. Cirac?, A. Gonzélez-Tudela®>*

The discovery of topological materials has motivated recent developments to export topological concepts into

photonics to make light behave in exotic ways. Here, we predict several unconventional quantum optical
phenomena that occur when quantum emlners |r|leva:l with a topological waveguide quamum electrodynamics

bath, namely, analog of th ger model. When th requency lies within the
topological bandgap a chiral bound ,whlzh ted on just one side (right or left) of the emitter.In
itters, this i i i them, which

can give rise to exotic many- hody phases such a5 double Néel ordered states. Furthermore, when the emitters’
optical transition is resonant with the bands, we find unconventional scattering ifferent super/
subradiant states depending on (he band topology. Last, we propose several implementations where these
phenomena can be observed with state-of-the-art technology.

Copyright © 2019
The Authors, some
ights reserved:
exclusive licensee.
American Association
for the Advancement
of Science. No claim to

Nor
License 40 (CC BY-NC)
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PHYSICAL REVIEW B 108, 085126 (2023)

Quantum quench dynamics of Berry and Uhlmann phases in topological systems

Zhan Gao and Yan He
s, Sichuan University, Chengdu, Sichuan 610064, China

College of Physi
M (Received 30 March 2023; revised 18 June 2023; accepted 9 August 2023; published 21 August 2023)

‘We study the time evolution of geometric phases of one-dimensional topological models under the quench
dynamics. Taking the Creutz ladder model as an example, it is found that the Berry phase is fixed as the parameter
is suddenly tuned across the topological phase boundary, given that the inversion symmetry of the model is
preserved. At finite temperature, the Uhlmann phase displays abrupt jumps between the two quantized values,
which indicates the topological transition at certain times after the quench. Both the Berry and Uhlmann phase
will deviate from quantized values if the inversion symmetry if the model is broken.

DOI: 10.1103/PhysRevB.108.085126
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