May 16 – 18, 2025
College of Management, National Formosa University 國立虎尾科技大學第三校區文理暨管理大樓
Asia/Taipei timezone
The ASROC2025 Program is Now Available!

Time-Frequency Correlation of Repeating Fast Radio Bursts

May 16, 2025, 3:15 PM
15m
International Conference Hall 圓形國際會議廳 (College of Management, National Formosa University 國立虎尾科技大學第三校區文理暨管理大樓)

International Conference Hall 圓形國際會議廳

College of Management, National Formosa University 國立虎尾科技大學第三校區文理暨管理大樓

632 雲林縣虎尾鎮民主路63號文理暨管理大樓 第三校區圓形國際會議廳(文理暨管理大樓一樓) National Formosa University, 1F College of Managment, Huwei Township, Yunlin County, Taiwan

Speaker

Shotaro Yamasaki (National Chung Hsing University)

Description

The production mechanism of fast radio bursts (FRBs) remains elusive, and potential correlations between burst occurrence times and various burst properties may offer important clues. Among them, the spectral peak frequency is particularly important because it may encode direct information about the physical conditions and environment at the emission site. Analyzing over 4,000 bursts from the three most active sources -- FRB 20121102A, FRB 20201124A, and FRB 20220912A -- we measure the two-point correlation function ξ(Δt,Δνpeak) in the two-dimensional space of time separation Δt and peak frequency shift Δνpeak between burst pairs. We find a universal trend of asymmetry about Δνpeak at high statistical significance; ξ(Δνpeak) decreases as Δνpeak increases from negative to positive values in the region of short time separation (Δt<0.3 s), where physically correlated aftershock events produce a strong time correlation signal. This indicates that aftershocks tend to exhibit systematically lower peak frequencies than mainshocks, with this tendency becoming stronger at shorter Δt. We argue that the "sad trombone effect" -- the downward frequency drift observed among sub-pulses within a single event -- is not confined within a single event but manifests as a statistical nature that extends continuously to independent yet physically correlated aftershocks with time separations up to Δt∼0.3 s. This discovery provides new insights into underlying physical processes of repeater FRBs.

Section High Energy

Primary author

Shotaro Yamasaki (National Chung Hsing University)

Co-author

Tomonori Totani (University of Tokyo)

Presentation materials

There are no materials yet.